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Abstract—We present MR-Net, a general architecture for
multiresolution neural networks, and a framework for imaging
applications based on this architecture. Our coordinate-based
networks are continuous both in space and in scale as they are
composed of multiple stages that progressively add finer details.
Besides that, they are a compact and efficient representation. We
show examples of multiresolution image representation and ap-
plications to texture magnification, minification, and antialiasing.

Index Terms—Level of Detail, Multiresolution, Neural Net-
works, Imaging, Textures.

I. INTRODUCTION

Imaging applications benefit greatly from representations
that support multiple resolutions. This is because they are
instrumental for many tasks in computer vision and graphics,
such as: compression; analysis and rendering. Traditionally,
multiresolution representations for images have been based on
signal processing techniques derived from Fourier theory.

Recently, the revolution in the media industry caused by
deep neural networks motivated the development of new image
representations adapted to machine learning methods. In that
context, we introduce a new framework for the representation
of images in multiresolution using coordinate-based sinusoidal
neural networks.

A. Motivation

The main breakthrough in deep learning for computer vision
and imaging was due to the seminal work of LeCun, Bengio,
and Hinton [1]. This paper proposes the Convolutional Neural
Network (CNN) as a proper architecture for the analysis of
visual imagery. The effectiveness of CNNs comes from the
translation invariant properties of the convolution operator.

Deep multi-layer perceptron networks, such as CNNs, em-
ploy an array-based discrete representation of the underlying
signal. In this case, the network input consists of a vector of
pixel values (R,G,B) that represents the image directly by data
samples. Therefore, we can also call this kind of network a
data-based network.

In contrast, a coordinate-based neural network represents the
image indirectly. This kind of network is a fully connected
MLP (Multi Layer Perceptron) that takes as input a pixel
coordinate (x, y) and outputs the (R,G,B) color at that location.

While the data-based network is appropriate for analysis
tasks, relying on a discrete description of the image, the
coordinate-based network is suitable for synthesis, providing
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a continuous image description. For its characteristics, namely
continuity and compactness, there is a growing interest in the
research community to explore the potential of coordinate-
based networks for imaging applications.

B. Related Work

Coordinate-based networks provide a continuous functional
description for images using an implicit neural representa-
tion [2]. Since the coordinates are continuous, images can be
presented in arbitrary resolution.

Spectral neural implicit architectures constitute a particular
form of neural implicit representation in which the non-linear
activation function is the periodic function sin(x). As such,
it bridges the gap between the spatial and spectral domains,
given the close relationship of the sine function with the
Fourier basis.

However, these neural representations with periodic activa-
tion functions have been regarded as difficult to train [3]. To
overcome this problem, Sitzmann et al. [4] proposed a sinu-
soidal network for signal representation called SIREN. One of
the key contributions of this work is the initialization scheme
that guarantees stability and good convergence. Furthermore,
it also allows modeling fine details in accordance with the
signal’s frequency content.

A multiplicative filter network (MFN) [5] is a spectral
neural implicit architecture simpler than SIREN which is
equivalent to a shallow sinusoidal network. Lindell et al. [6]
presented BACON (Band-limited Coordinate Network), an
MFN that produces intermediate outputs with an analytical
spectral bandwidth which can be specified at initialization and
achieves multi-resolution decomposition of the output.

The control of frequency bands in the representation is
closely related with the capability of adaptive reconstruction
of the signal in multiple levels of detail. In that context,
Mueller et al. [7] developed a multiresolution neural network
architecture based on hash encoding. Also, Martel et al. [8]
designed an adaptive coordinate network for neural signals.

Another benefit of multiresolution image representations is
the built-in support for antialiasing, which traditionally is im-
plemented using image pyramids, such as in MIP Mapping [9].

One of the important applications of imaging in both
2D and 3D Computer Graphics is texture synthesis. In that
realm, besides antialiasing, the creation of visual patterns from
exemplars has great relevance [10]. Spectral neural implicit
architectures are particularly suited to model stationary or
quasi-stationary signals due to the periodic nature of its
activation function [11].



C. Contributions

In summary, we make the following contributions:
• We introduce a family of multiresolution coordinate-

based networks, with unified architecture, that provides
a continuous representation spatially and in scale.

• We develop a framework for imaging applications based
on this architecture, leveraging classical multiresolution
concepts such as pyramids.

• We show that our architecture can represent images with
good visual quality, outperforming related methods both
in PSNR and number of parameters; we also demonstrate
its use in applications of texture magnification and mini-
fication, and antialiasing.

II. MULTIRESOLUTION SINUSOIDAL NEURAL NETWORKS

In this section we present MR-Net (Multiresolution Si-
nusoidal Neural Networks), a representation of signals in
multiple levels of detail using deep neural networks.

A. Overview

Our proposal is a family of coordinate-based networks
with unified architecture. We derive three main variants,
namely S-Net, L-Net, and M-Net. As a whole, they provide
different trade-offs with respect to control of frequencies in
the representation.

The characteristics of the MR-Net Family are:
• 2 Types of Level of Detail – in this respect it can be

based on network capacity or spectral projection.
• 3 Types of Sampling – the input signal can be given either

by regular sampling (with or without subsampling) or by
stochastic / stratified sampling.

• Progressive Training – the network is trained progres-
sively using a variety of schedule regimes.

• Continuous Multiscale – the representation is continuous
both in space and scale. Therefore it can reconstruct the
signal at any desired resolution / level of detail.

The following subsections present the concepts involved in
our approach, as well as, the technical details of the MR-Net
architecture. For a more complete description see [12].

B. Architecture

Based on considerations for learning and splitting frequen-
cies of the input signal into levels of detail, we devised a
general architecture for a family of neural networks.

The core idea is to structure the network into multiple
stages. Each stage learns in a controlled way a level of detail
corresponding to a frequency band.

A stage configuration is derived from a sub-network called
MR-Module, which is composed of four blocks of layers: the
first layer; the hidden layers; the linear layer; and the control
layer. The three initial blocks form a fully connected sinusoidal
MLP. The last block consists of one node (not trained) to
control the stage output, given by the function cα(x) = αx,
with α ∈ [0, 1], where x comes from the linear layer. Figure 1
depicts the anatomy of the network, showing N stages of MR-
Modules.

Fig. 1: Anatomy of MR-Net Family

We can say that the first layer performs a projection of the
input signal into a dictionary of sine functions, the hidden
layers correspond to correlations of order n of signal frequen-
cies, the linear layer reconstructs the signal as a combination
of these frequency atoms, and the control layer is just a
mechanism to provide a continuous blend of level of detail
in the network.

The stages of the network are trained based on a predefined
schedule (See Section II-C). During training, the control layer
is the identity function, i.e. α = 1.

The contribution of these N stages is added together form-
ing the network output. Assuming that the MR-Net is learning
a function f(x) that fits the input signal, then

f(x) = g0(x) + · · ·+ gN (x) (1)

where gi(x) is the detail function given by the stage si, for
i = 1, . . . , N . The first stage s0 corresponds to the coarsest
approximation of the signal and the other subsequent stages
add increasingly finer details to it.

Note that this architecture is very much in the spirit of the
Multiresolution Analysis [13]. Indeed, consider the base case
with f(x) = g0(x) + g1(x), then g1(x) = f(x) − g0(x), i.e.,
g1 are the details that need to be added to g0 to increase the
level of detail.

The network learns the decomposition of the signal as the
projection into the coarse scale space and a sequence of
finer detail spaces. The characteristics of the level of detail
decomposition of each member of the MR-Net family will
depend on the specific configuration of the network stages, as
will be presented next.

1) S-Net: In the S-Net, a stage has only the first layer, the
linear layer, and the control layer, which is not involved in
the learning process. (See Figure 2.) Therefore, this kind of
network consists of a learned “sine transform”, with these two
layers corresponding, respectively, to the direct and inverse
sine transform. As a consequence, the S-Net can provide level
of detail by the initialization of frequency bands in each stage.

2) L-Net: The L-Net is composed of N complete inde-
pendent stages (with the four blocks: first; hidden; linear and
control) that are aggregated in the output (see Figure 3).
Consequently, the level of detail in this kind of network is
determined by the capacity of the individual stages.

3) M-Net: The M-Net consists of a hierarchy of stages, in
which subsequent stages are linked together. The output of a
block of hidden layers is connected both to the linear layer,
as well as, to the input of the hidden layer block of the next
stage (see Figure 4).



Fig. 2: S-Net

Fig. 3: L-Net

Fig. 4: M-Net

A consequence of this hierarchical structure is that the hid-
den layer block in a stage is augmented with the sequence of
hidden layer blocks coming from previous stages. Therefore,
the capacity of each stage increases with its depth in the
hierarchy. Accordingly, it is expected that this kind of network
provides a more powerful mechanism for learning levels of
detail. For this reason we will use this variant for the imaging
applications in this paper.

C. Training

The training of the MR-Net has to take into account the
mechanisms for learning different levels of detail by each stage
of the network. There are two basic mechanisms: i) level of
detail filtering and ii) pre-processing of the input signal.

Level of detail filtering is achieved either with the frequency
band filtering (through the initialization of the w0 weights of
the first layer); or with the capacity filtering (conditioned on
the number of nodes and layers of the network).

Regarding the network input, we can either use the original
signal, or pre-process the signal with a low-pass filter.

1) Multi-Stage Schedule: Since the M-Net has multiple
stages, each learning a different level of detail, one important
aspect is the stage training schedule. We could train the whole
network with all stages in parallel, but we found it beneficial
to train each stage in sequence from the lowest to the highest
level of detail. This scheduling is our choice and a common
strategy in the traditional multiresolution analysis of signals.

2) Progressive learning: Furthermore, we adopt a progres-
sive learning strategy by “freezing” the weights of a stage once
it is trained in the schedule sequence. This strategy guarantees

that the details are added to the representation incrementally
from coarse to fine.

3) Adaptive Training: We also employ an adaptive training
scheme for the optimization of each network stage combining
both accuracy loss thresholds and convergence rates.

D. Level of Detail Schemes

By incorporating the different aspects discussed in the previ-
ous sections we can define various schemes for learning level
of detail representations using the family of Multiresolution
Sinusoidal Neural Networks. The main ones are: Filtering with
Gaussian Tower; and Filtering with Gaussian Pyramid. Here
we highlight these two.

1) Gaussian Tower: If we want to have control over the
frequencies present in the signal we can build a multiscale
representation of the signal and train the network to approxi-
mate each level of this representation.

We start by feeding our model with a “Gaussian Tower”,
that is, multiple versions of the signal filtered consecutively
by a low-pass filter, but without decimation. This way, each
scale is reconstructed from the same amount of samples. The
network must be trained from the less detailed scale to the
most detailed one.

2) Gaussian Pyramid: Based on the Shannon sampling
theorem the Gaussian Tower is a highly redundant multiscale
representation. On the other hand, the Gaussian Pyramid is
”critically sampled”, i.e., it has the minimum number of sam-
ples required to represent each frequency band. The Gaussian
Pyramid is a classical multiscale representation of uniformly
sampled signals and we will adopt this scheme in the imaging
applications of this paper.

III. IMAGING APPLICATIONS

In this section we describe the implementation and exper-
iments of the MR-Net for imaging applications. As already
mentioned, we will adopt the M-Net variant of the architecture
and a level of detail scheme based on the Gaussian Pyramid.

We designed the MR Module considering an empirical ex-
ploration of the sub-network capacity to represent images with
typical characteristics (i.e., photographs). The configuration is
as follows: width 96 neurons (fist, hidden and linear layers);
number of layers of the hidden block equal to one.

The number of stages of the network is determined by the
resolution of the image to be represented. The multiresolution
for the image Pyramid is according to a dyadic structure, i.e.,
2j . The base resolution of the first stage is 23 = 8.

The Image Pyramid is built by filtering with a Gaussian
kernel and decimation. Most of the images used in the exper-
iments have a resolution of 512. So, the pyramid is composed
of the following resolution levels: 8, 16, 32, 64, 128, 256, and
512. Consequently, the network has a total of 7 stages.

We train the network using an adaptive scheme with the
following hyper-parameters: Loss Function = MSE (Mean
Squared Error); convergence threshold = 0.001 (i.e., training
of a stage stops if loss value changes less than 0.001 percent);
maximum number of epochs per stage = 300; each epoch visits



Fig. 5: Cameraman - reconstructed multiresolution levels 1, 3, 5 and 7 and corresponding Fourier spectra.

all the pixels once; size of mini-batch = 65536 (to fit the
GPU memory). Training is done with ADAM and learning
rate of 0.0001.

The initialization of the network follows the scheme in [4],
that normalizes the weights of all layers and includes a factor
ω0 that sets the spatial frequency of the first layer to better
match the frequency spectrum of the signal. However, we
differ in that the ω0 factor is used just for the initialization
of the first layer and we create an additional factor, ωG that
is applied to the other layers to boost the network gradients.
Also, the weights of first layer of each stage are set to match
the frequencies of the corresponding level of detail, in the
following way — ω0 is uniformly distributed as U(−Bi, Bi)
with Bi = [4, 8, 16, 32, 64, 128, 256]7i=1 for a network with
seven stages. The factor ωG = 30 for all experiments.

A. Level of Detail Example

We now show an example of a multiresolution image repre-
sentation using the setup described above. For this experiment
we chose the ”Cameraman”, a standard test image used in
the field of image processing and also in [4]. The source is a
monochromatic picture with 512× 512 pixels of resolution.

Figure 5 depicts the levels 1, 3, 5 and 7 of the multiresolu-
tion hierarchy reconstructed with full resolution of 512×512,
as well as the corresponding Fourier spectra (intermediate
levels skipped to fit the page).

The training times for each stage of the networks are as
follows: 5s, 4s, 3s, 11s, 17s, 29s and 48s. The total training
time is 117s. The machine was a Windows 10 laptop with
a NVIDIA RTX A5000 Laptop GPU. Note that these times
result from the adaptive training regime and the number of
samples for each level of the Gaussian Pyramid.

The training evolution is depicted in the graph of Figure 6
that shows the convergence of the MSE loss with the number
of epochs for each multiresolution stages 1, 3, 5, and 7. It is
worth pointing out the qualitative behavior of the network, in
that the base level (stage 1) takes more than 200 epochs to
reach the limit, while detail levels (stages 3, 5, 7) take less
than 150 epochs to converge. Also, the error decreases for
each level of detail. It is like, there are two different modes,
one to fit the base level and other for the detail levels.

Fig. 6: Qualitative convergence behavior for Cameraman in
Fig 5.

The inference time for image reconstruction, both in CPU
and GPU is sufficiently fast for interactive visualization.

B. Texture

The second imaging example is the usage of the MR-Net
representation to model texture and patterns. Arguably, visual
textures constitute one of the most important applications
for images in diverse fields, ranging from photo-realistic
simulations to interactive games. Currently, more and more



image rendering relies on some kind of graphics acceleration,
sometimes through GPUs integrated with Neural Engines. In
that context, it is desirable to have a neural image representa-
tion that is compact and supports a level of detail.

For the experiment shown in this subsection we have chosen
an image of woven fabric background with patterns. The
characteristics of this texture allows us to explore the limits
of visual patterns at different resolutions. The original image
has a resolution of 1025× 1025 pixels and the corresponding
model contains 5 levels of detail.

In Figure 7 we show our reconstruction at original resolu-
tion, Fig.7(b) (center); as well as a zoom-in, Fig.7(c) (right),
and a zoom-out, Fig.7(a) (left).

(a) (b) (c)

Fig. 7: Woven Fabric Texture: (a) zoom out; (b) original image
resolution; (c) zoom in.

The zoom-in is a detail with resolution of 562×562. marked
by the white rectangle in Fig.7(b) and scaled up to 1025×1025.
Thus a zoom-in factor of 1.8 times. It can be seen that the
enlargement extrapolates the fine details of the image at this
higher resolution beyond the original image.

The zoom-out is a reduction of the entire image to 118×118
pixels (shown enlarged to 501 × 501 in the image for better
viewing). The top sub-image is the network reconstruction
at the appropriate level of detail (approximately 0.92). The
bottom sub-image is point-sample nearest neighbor reduction.
It can be seen that our reconstruction is a proper anti-aliased
rendition of the image, while the sampled reduction exhibits
aliasing artifacts.

These two behaviors in the experiment are manifestations
of “magnification” and “minification”, classical resampling
regimes for respectively scaling up and down the image [14].
In the first case it is necessary to interpolate the pixel values
and in the second case it is required to integrate pixel values
corresponding to the reconstructed pixel. The M-Net model
accomplishes these tasks automatically. Note that we have cho-
sen a fractional scaling factors in both cases to demonstrate the
continuous properties in space and scale of the M-Net model.

C. Anti-aliasing

In the previous subsection we resorted to level of detail
control to guarantee an alias free rendering independently of
the sampling resolution. However, this task was facilitated
because we could use a constant level of detail for the entire
image, due to the zooming in/out operation in 2D.

On the other hand, in texture mapping applications, this
scenario is no longer the case. Typically, it requires to map a
2D texture onto a 3D surface that is rendered in perspective by
a virtual camera. In such situation, the level of detail varies
spatially depending on the distance of the 3D surface point
from the camera. Here, proper anti-aliasing must compensate
the foreshortening caused by a projective transformation. Next
we present a simple example of anti-aliasing using the M-Net.

Let I be a checkerboard image, T be a homography map-
ping the pixel coordinates (x, y) of the screen to the texture
coordinates (u, v) of I , and f = g1+ · · ·+gN : [−1, 1]2 → R
be a M-net with N stages approximating I .

(a) (b)

Fig. 8: Checkerboard in perspective: (a) point sampled texture
rendition; (b) M-Net anti-aliased reconstruction.

Figure 8(left) illustrates aliasing effects on the image I after
applying it to the inverse of T . We avoid such a problem using
the multiresolution of the M-Net f . The result is presented in
Figure 8(right). Observe that the procedure reduces aliasing
at large distances. Specifically, we define the level of detail
parameter λ(x, y) for the M-Net f at a pixel (x, y) considering
the formula proposed by Heckbert [15]:

λ(x, y) = max


√(

∂u

∂x

)2

+

(
∂v

∂x

)2

,

√(
∂u

∂y

)2

+

(
∂v

∂y

)2
 .

Thus λ(x, y) is the bigger length of the parallelogram gener-
ated by the vectors ∂T

∂x and ∂T
∂y .

We define the resolution λ of f using the formula

fλ = λ1g1 + · · ·+ λNgN ,

where λi are weights defined as follows. First, scale λ such
that λ

(
[−1, 1]2

)
⊂ [0, N ]. Thus, set λi = 1 for 1 ≤ i ≤ ⌊λ⌋,

λ⌊λ⌋ = λ− ⌊λ⌋, and λi = 0 otherwise. Here ⌊λ⌋ denotes the
floor value of λ.

IV. CLOSING REMARKS

In this last section we close the paper with an assessment of
our results compared to related work, as well as, its limitations,
and a discussion of future directions for our research.



A. Comparisons
We compare the performance of MR-Net image represen-

tation with two other neural network models, namely SIREN
and BACON. For this evaluation we used the “Cameraman”
image shown in Subsection III-A, comparing model size and
reconstruction quality. The results are summarized in Table I.

Model # Params ↓ PSNR ↑ # Levels
SIREN 197K 61.8 db 1
BACON 398K 82.1 db 6
MR-Net 121K 84.9 db 7

TABLE I: Comparison with SIREN and BACON.

The M-Net hyper-parameters are: 96 hidden features; ω0 ∈
[4, 256] ; trained with a Gaussian Pyramid of 7 levels.
Therefore, the model size has 121937 parameters. The image
resolution is 512 x 512 pixels. The PSNR of the final image
reconstruction is 84.9 db.

For SIREN we employed the configuration of the image ex-
periments in their Github public code and paper. The network
hyper-parameters are: 3 hidden layers; 256 hidden features;
ω0 = 120. The model size has 197376 parameters and it has
only 1 level of detail. The PSNR of the reconstructed image
is 61.8 db.

For BACON we also based the configuration on their paper
examples and public code at Github. However we made some
adjustments to make the hyper-parameters compatible with
SIREN and M-Net settings, as follows: image size 256×256;
6 hidden layers; 256 hidden features. Accordingly, the total
number of parameters is 398343. The PSNR of the level 6
image is 82.1 db. We remark that to establish a fair comparison
with SIREN we evaluate only the PSNR of the final full
resolution image.

Based on these experiments we conclude that MR-Net
compared favorably in relation to SIREN and BACON, both in
terms of representation size and quality of image reconstruc-
tion. Compared to SIREN the M-Net model is only 62 % of the
size of the SIREN model, even though it has 7 levels of detail
in contrast with 1 level for SIREN. Additionally, the image
reconstruction has 1.37 better quality, despite the fact that the
representation is more compact. Compared to BACON, the
results are somewhat better. The M-Net model is just 30 %
of the size of BACON model, while our reconstruction of
the final image has almost the same quality (i.e., 1.034 %).
Experiments with other images show similar results [12].

B. Limitations
We found that choosing appropriate values for the ω0

parameter, which defines the spatial frequency of the first layer
of the network, is important to achieve proper results. When
using a shallow sinusoidal network such as the S-Net, we can
use the Nyquist frequency as a direct reference to pick the
frequency intervals at each stage. However, a deep sinusoidal
network such as the M-Net can learn higher frequencies that
were not present in the initialization. To the best of our
knowledge, there is not (yet) theory to compute or bound
these frequencies.

In our experiments, we determined the ω0 values for
initialization empirically, testing values below the Nyquist
frequency. To better harness the power of sinusoidal neural
networks, it is important to develop mathematical theories to
understand how the composition of sine functions introduces
new frequencies based on the initialization of the network.

C. Ongoing and Future Work

In terms of future work, we plan to expand this research in
two main directions. On one hand, we would like to explore
the MR-Net architecture for other image applications including
super-resolution, operations in the gradient domain, generation
of periodic and quasi-periodic patterns, as well as image
compression. On the other hand, we would like to extend
the MR-Net representation to other media signals in higher
dimensions, such as video, volumes, and implicit surfaces.
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