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1. INTRODUCTION 

In this paper we present a general class of 
splines. Ue shall show that some known splines are 
special cases of these splines. Of particular 
interest, however, is the subclass of these splines 
that is local and interpolating. 

The spline will be presented in a parametric 
form: 

FU) = tx,U), x2U), . . .] 

For the purpose of the mathematics it is only 
necessary to consider one component, say x U ) , since 
the others are treated in the same way. 

For the purpose of this paper we use the 
following terminology: 
(i) Defining points: a set of ordered data points Pj 

that are evenly spaced in -6. In our examples we 
shall usually use two dimensions. 

(ii) Spline: A piecewise function with preset 
properties of continuity and differentiability. 

(iii) Interpolating spline: a spline that passes 
through its defining points. 

(iv) Approximating splines: a spline that may not pass 
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through its defining points. 
(v) Local spline: a spline that changes in a finite 

interval Mhen one of its defining points is 
changed. 

(vi) Cardinal functioni a function that is 1 at some 
knot, 0 at all other knots and can be anything in 
between the other knots. It satisfies F|Uj)«&u. 

2. THE MODEL 

Consider two functions of *i x,U) and x 2 U ). The 
average function FU) = (x,U)+x2U) )/2 is a function 
that for each -6 passes midway between the two given 
functions. Ue may also assign different weights and 
have 

F U) * (WjX, U) +w2x2U) ) / (w,+w2) 

thus emphasizing the effect of one function over the 
other. This is merely a weighted average of x, and x2. 
Finally this can be extended to make w a function of Ò 
thus varying the weight on the x's as we vary Ò. Also 
the number of functions can be Increased and the model 
of the spline will then be 

(1) FUU^XiUJwiUJ/SwiU) 

The WjUÎ/^WjU) are often called blending functions. 

It should be emphasized at this point that in the 
model defined by equation (1), functions are blended 
together rather than the defining points as in other 
interpolating schemes. 

If WjU) is zero outside some given interval of /> 
then XjU) has an effect only in that interval. In 
other words, x,.U) has only a local effect on F U ) . 
Note that the differentiability of FU) is determined 
by the minimum differentiability of x,U) and WjU). 
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Consider the following case: Let XjU) be any 
function interpolating the points P; through ai+k, and 
let WjU) be zero outside U; . , , ^ , ) . The function F U ) 
defined in equation (1) will thus be an interpolating 
function. Intuitively, this says that if all of the 
functions that have an effect at a point, pass through 
the point, then the average of the functions will pass 
through the point· 

In general, the points pj are pairs (xj,yj) and in 
the parametric space we can, without loss of 
generality, place >&j=j. 

A polynomial of degree k that passs through k+1 
given points will be used as x W , In general it will 
not pass through the other points. If the width of 
the interval in which w,U) is non zero is less than or 
equal to k+2 then x,U) will not affect F U ) outside 
the interpolation interval. This means that F U ) will 
be an interpolating function. On the other hand if 
the width of WjU) is greater than k+2 then XjU) will 
have an effect on the curve outside the interpolation 
interval. F U) will then be an approximating 
funct ion. 

One example is the B-spline where the polynomials 
are of degree 0 [x,U)»P,] and w,U)«NuU) the B-spline 
basis function. Since I N F U N I then F U ) « 2 P j N u U ) . 
For cubic B-splines the width of Nli3U} is 4 which is 
greater than the degree of the polynomial+2. 
Therefore the B-spline is approximating. 

3· BLENDING FUNCTIONS 

Since the blending functions presented above are, 
as of now, completely arbitrary we impose some 
constraints in order to make them easier to use. Ue 
shall deal only with blending functions that are zero 
outside of some given interval. Also we require that 
2>JjU) does not vanish for any Λ. Ue shall normalize 
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w,U) so that ][WjU)=l for all -6. In addition, since 
it is most likely to choose X;(s) as polynomials which 
are infinitely differentiate, F U ) inherits the 
differentiability of w U ) . Thus a differentiability 
constraint must also be imposed on these blending 
funct ions. 

1. A blending function already used for 
approximating splines is the B-spline basis 
function· It has been used for blending together 
points (constant functions) to get an 
approximating spline. Ue have extended its use 
to blend functions together. There are several 
ways of generating the basis function [6]. 

2. Another function that was tried was a sort of 
tapered end window with more control over the 
differentiability (see figure 3 ) . This is an 
even function that is zero for lt|>t, (see figure 
1) and the part of the function between t1/? and 
t, is skew symmetric about t1/2. This latter 
portion was generated using Bezier curves [3,53 
for the set of points spaced as indicated in 
figure 1. (crosses mark the points) By virtue of 

a property of 
di fferentiabiIi ty of 

Be'zier curves, the 
the function depends 
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linearly upon the number of points. The example 
in Figure 1 will yield a curve of 
di fferenti abi M ty 3. 

3. The previous two blending functions are 
piecewise polynomials· In general we might make 
a blending function out of pieces of polynomials 
where the ends of the pieces have continuity and 
di fferenti abi Ii ty constraints. 

4. CALCULATING CARDINAL FUNCTIONS 

If in equation (1) we assume XjU) to be 
polynomials of degree k then this equation can be 
reduced to a much simpler form: 

(2) F U Î - L P J C A U ) 

where the CJkU) are cardinal blending functions and j 
is the knot to which the cardinal function and the 
point belong and each CJkU) is a shifted version of 
C0>kU)· C0>kU) is a function of both the degree k of 
the polynomials and the blending function w U ) : 

(3) C0.kU) =2i.o HUi-K U / j+1) ] w U+i ) 

In essence we see that for a polynomial case our 
cardinal functions are a blend of Lagrange 
polynomials. When calculating C0.kU), w U ) should be 
centered about k/2. 

Ue have thus shown a way of creating sets of 
cardinal functions that are non-zero in a finite 
interval and the differentiability of which can be 
easily controlled. This result enables us to reduce 
the computation when creating interpolating splines. 

5, EXAMPLES 

To demonstrate this class of splines we have 
chosen to blend polynomials usina both the B-spline 
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and Be'zier curves as blending functions· Our 
parameters are: 

1. Di fferenti abi Ii ty 
2. Degree of polynomials to be blended 
3. The localness of the spline (which determines 

whether it interpolates or approximates) 
4. Type of blending function (B-spline or Be'zier 

curve) 

To demonstrate the functions we are using a two 
dimensional case F U J - t X U ) , YU)] 

Figure 2 shows a B-spline blending function with 
differentiability 1. The vertical lines represent the 
knots' coordinates. Figure 3 shows a Bezier curve 
type blending function with differentiability 2 and 
width 4. Ue have already shown that the blending 
together of polynomials is equivalent to blending 
points with a corresponding cardinal function. If the 
blending function of figure 2 is to be applied to 
polynomials of degree 1 (i.e. the straight lines 
passing through adjoining points) then the 
corresponding cardinal function is shown in figure 4. 

The blending function of figure 4 when applied to 
the points yield the spline of figure 5. Figure G 
shows a cardinal function made for polynomials of 
degree 2 using B-spline blending functions of 
differentiability 2. Figure 7 shows the resulting 
spi ine. 

G. EXTENSIONS 

By taking the cartesian cross product of two 
splines one can get a bivariate surface that 
interpolates a grid of points. 

As an example, we can find the coefficients of 
bicubic patches that interpolate a grid of points. 
The cardinal function of figure 4 is a combination of 
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the B-spline basis function of differentiability 1 and 
linear functions, which yields a cubic· 

The formulation for a surface patch using 
that cardinal function can be shown to be; 

t-63 tf A 1] M 

where M= l /2 
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and P,j are point values· The patch interpolates the 
middle four points· Adjoining patches have continuity 
of the first derivative. This can be compared with 
other methods for generating bicubic patches in 
[1,2,4]. 

7. CONCLUSION 

We have presented a class of splines in equation 
(1) that has some useful characteristics for design 
purposes because it is local and interpolating. Ule 
think this spline bears further investigation on its 
properties. 
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INTERNAL U IDT H-3 , D I F F E R E N T I A B I L I T Y - 1 , TYPE B-SPLINE 

F igure 2 

S —► 

INTERNAL UIDTH-4 & I F F E » E N T I A B I L I T v - 2 . TYPE■ BEZIER 

F igure 3 
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INTERUAL UIDTH-4, DIFFERENTIABILITY«1. TYPE B-SPLINE 
DEGREE OF POLYNOMIAL FOR CARDINAL FUNCTION IS 1 

Figure 4 

DEGREE OF POLYNOMIAL FOR CARDINAL IS 
DIFFERENTIABILITY-1, TS'PE B-SPLINE 
UIDTH OF BLENDING FUNCTION-4 

Figure 5 
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ItITERUAL WIDTH-6. DIFFERENTIABILITY-2. TYPE B-SPLINE 
DECREE OF POLYNOMIAL FOR CARDINAL FUNCTION IS 2 

Figure 6 

DEGREE OF POLYNOMIAL FOR CARDINAL IS Z 
DIFFERENTIABILITY-2, TYPE B-SPLINE 
WIDTH OF BLENDING FUNCTION.6 

Figure 7 
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