

pixelSplat:

3D Gaussian Splats from Image Pairs
for Scalable Generalizable 3D Reconstruction

Reviewer: Alberto Arkader Kopiler

Archeologist: Davi Guimarães

Hacker: Vitor Pereira Matias

PhD Student: Fernando Pereira de Sá

Reviewer

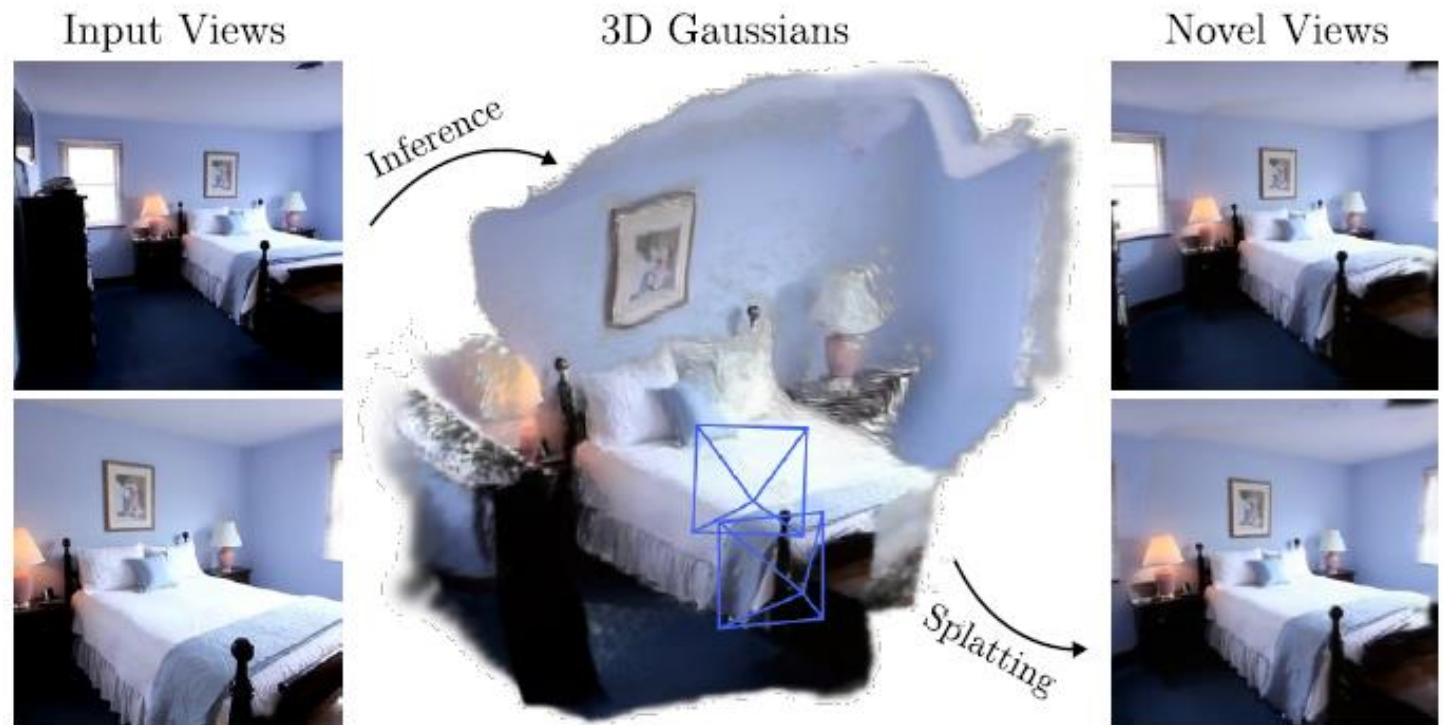
Alberto Arkader Kopiler

Introduction

- 3D reconstruction is one of the most popular research areas in computer vision
 - 1) NeRF introduced the neural network to generate 3D renders.
 - 1) pixelNeRF uses only a few images as input, and a CNN-based Encoder on top of NeRF to generate better 3D renders.
 - 1) 3D Gaussian Splatting uses 3D Gaussian and gradient descent to generate better 3D renders than priors.
 - 1) pixelSplat combines 3D Gaussian splatting with a reparameterization trick and a neural network
- Input two images of an object from two different viewpoints and generates a 3D render within minimal inference time. It is like a combination of 3D Gaussian Splatting and NeRF.

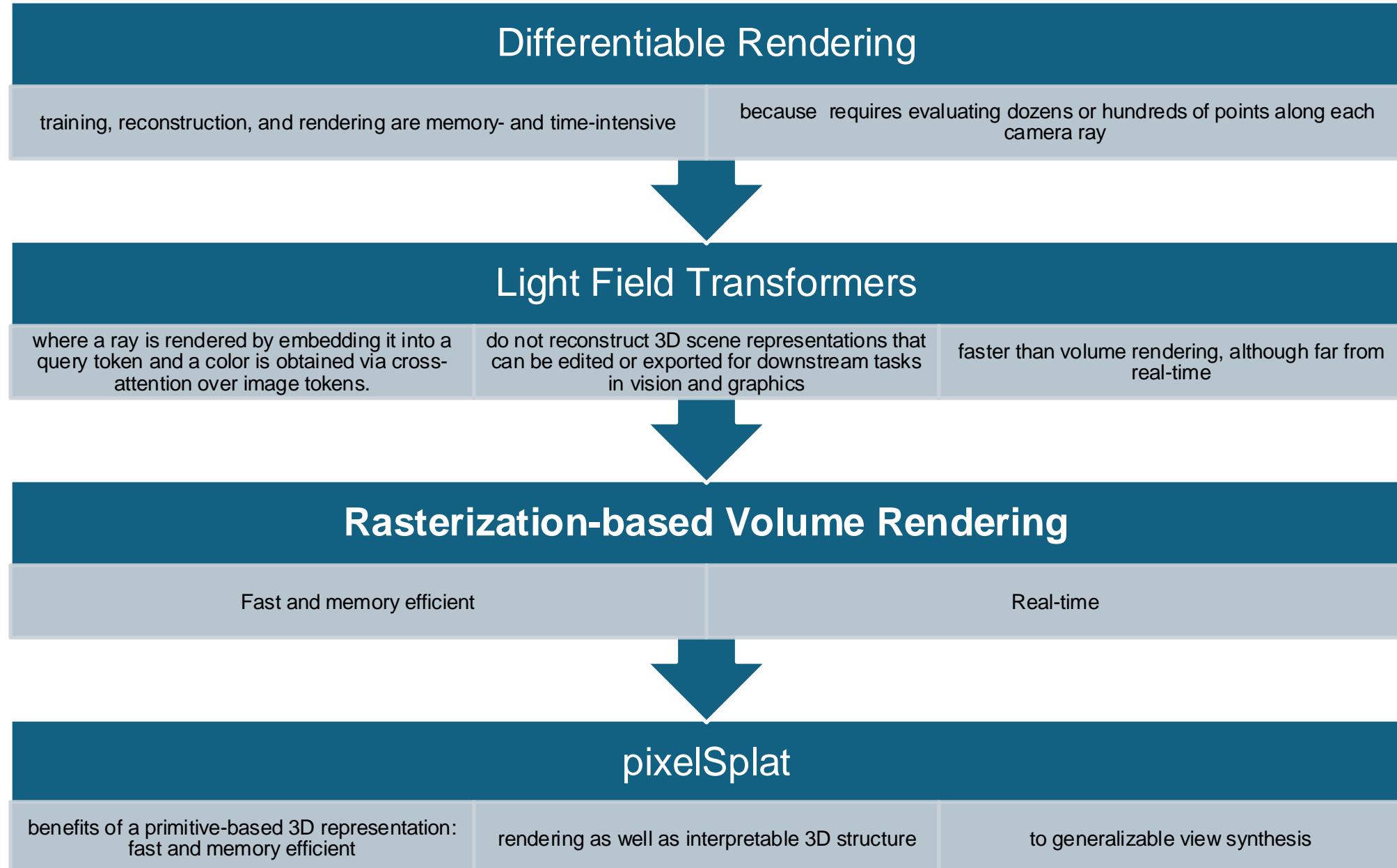
Summary

- A feed-forward model that learns to reconstruct 3D radiance fields parameterized by 3D Gaussian primitives from pairs of images.

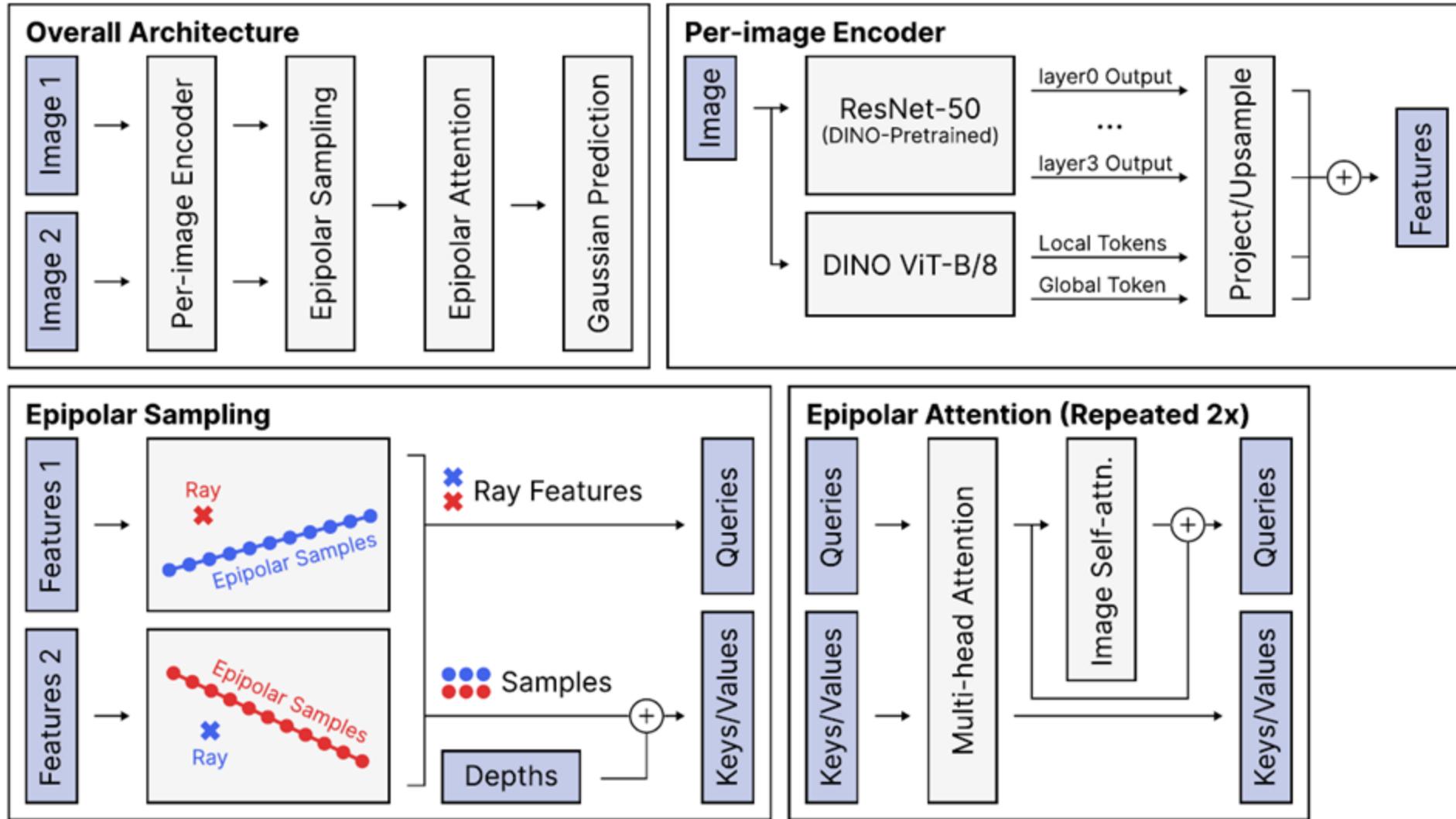


- This results in an explicit 3D representation that is renderable in real time, remains editable, and is cheap to train.

Model's Evolution



Architecture Diagram

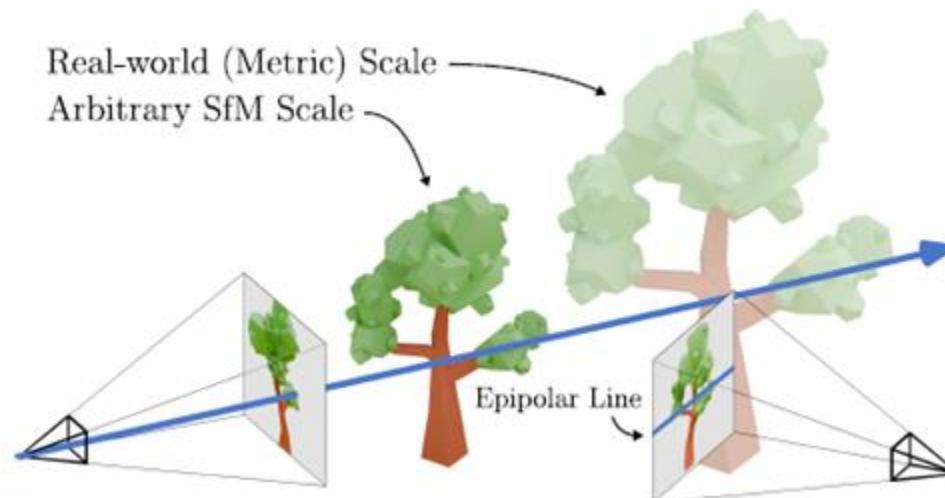


Two-View Image Encoding

- PixelSplat begins by processing a pair of input images through a feature extraction network, which generates a high-dimensional representation of each image. This neural network, often structured similarly to those used in NeRF architectures, extracts crucial visual and spatial features from the images, setting the stage for understanding the scene's geometry.

Epipolar Geometry and Scale Ambiguity Resolution

- The extracted features are then processed using an epipolar transformer, a component that leverages the geometric relationship between the two views to resolve scale ambiguity—an inherent challenge in reconstructing 3D scenes from 2D images. This step ensures that the 3D positions inferred from different images are consistent relative to each other, addressing variations in camera positioning and orientation.



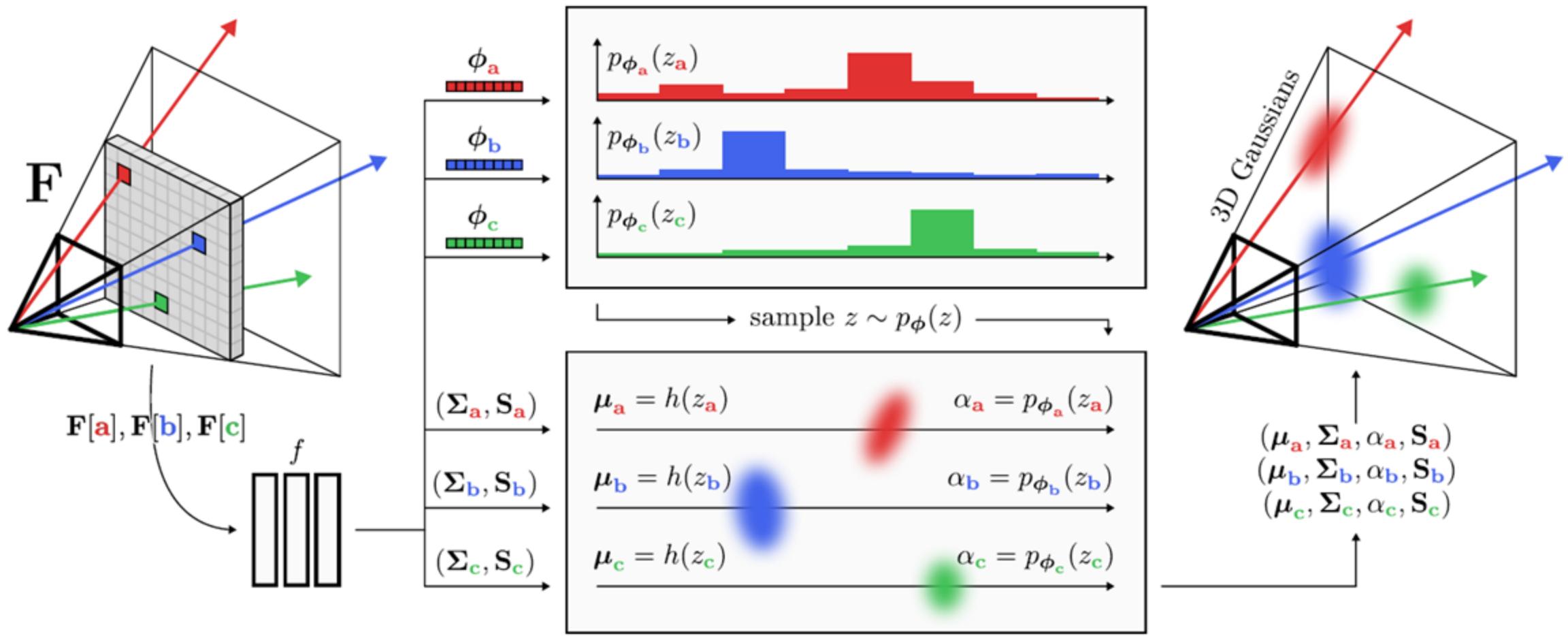
Probabilistic Sampling of Gaussian Parameters

- With scale and geometry calibrated, the next step involves a novel application of 3D Gaussian splatting, where the model predicts a dense probability distribution for the potential locations of Gaussian primitives. This approach is facilitated by the reparameterization trick, which allows the network to sample these locations differently. Here, each Gaussian's position (mean), shape (covariance), and visibility (opacity) are determined, enabling gradients to be propagated back through the network during training, thus optimizing the Gaussian placement efficiently.

Two-View Image Encoding

- **Rendering and Output Generation:** Finally, the parameterized 3D scene, now represented as a collection of Gaussian splats, is rendered to produce novel views. This rendering process is optimized for speed and memory efficiency, making use of the Gaussian splatting technique's light computational footprint. The output is a set of new images, or novel views, generated from perspectives not originally captured by the input images, showcasing the model's ability to interpolate and extrapolate 3D space from limited data.

Proposed probabilistic prediction of pixel-aligned Gaussians

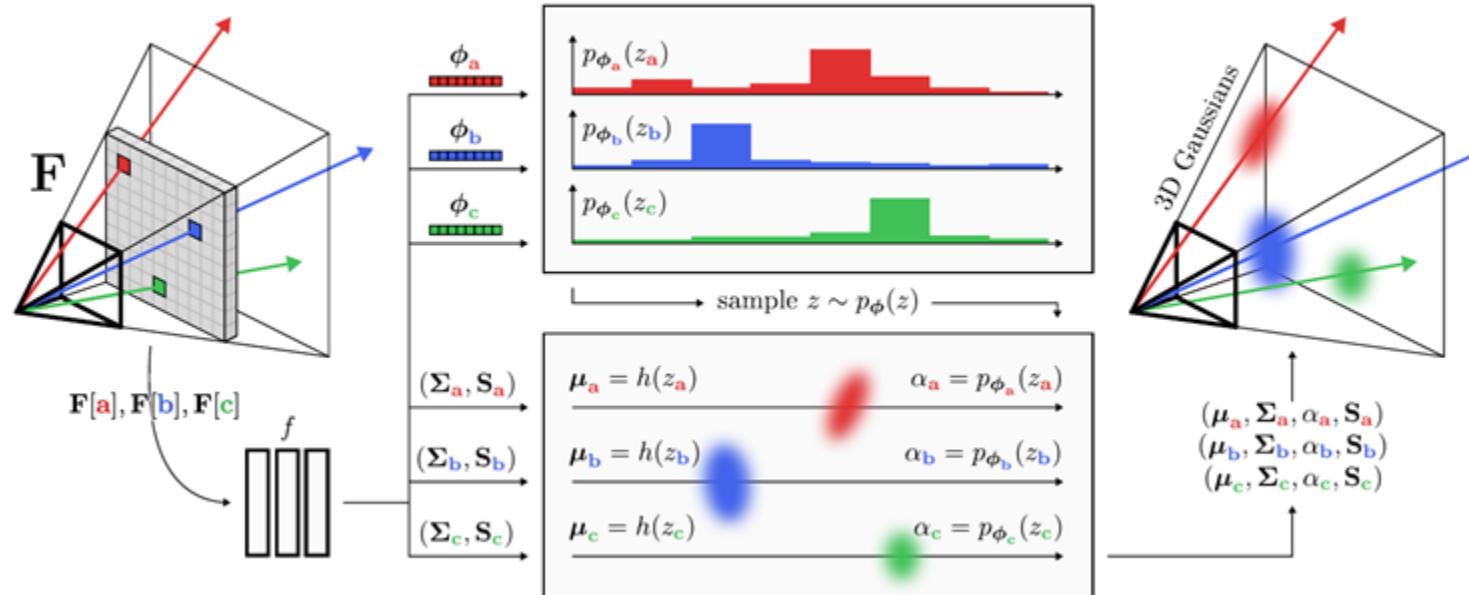


Probabilistic prediction of pixel-aligned Gaussians

Algorithm 1 Probabilistic Prediction of a Pixel-Aligned Gaussian.

Require: Depth buckets $b \in \mathbb{R}^Z$, feature $\mathbf{F}[\mathbf{u}]$ at pixel coordinate \mathbf{u} , camera origin of reference view \mathbf{o} , ray direction \mathbf{d}_u .

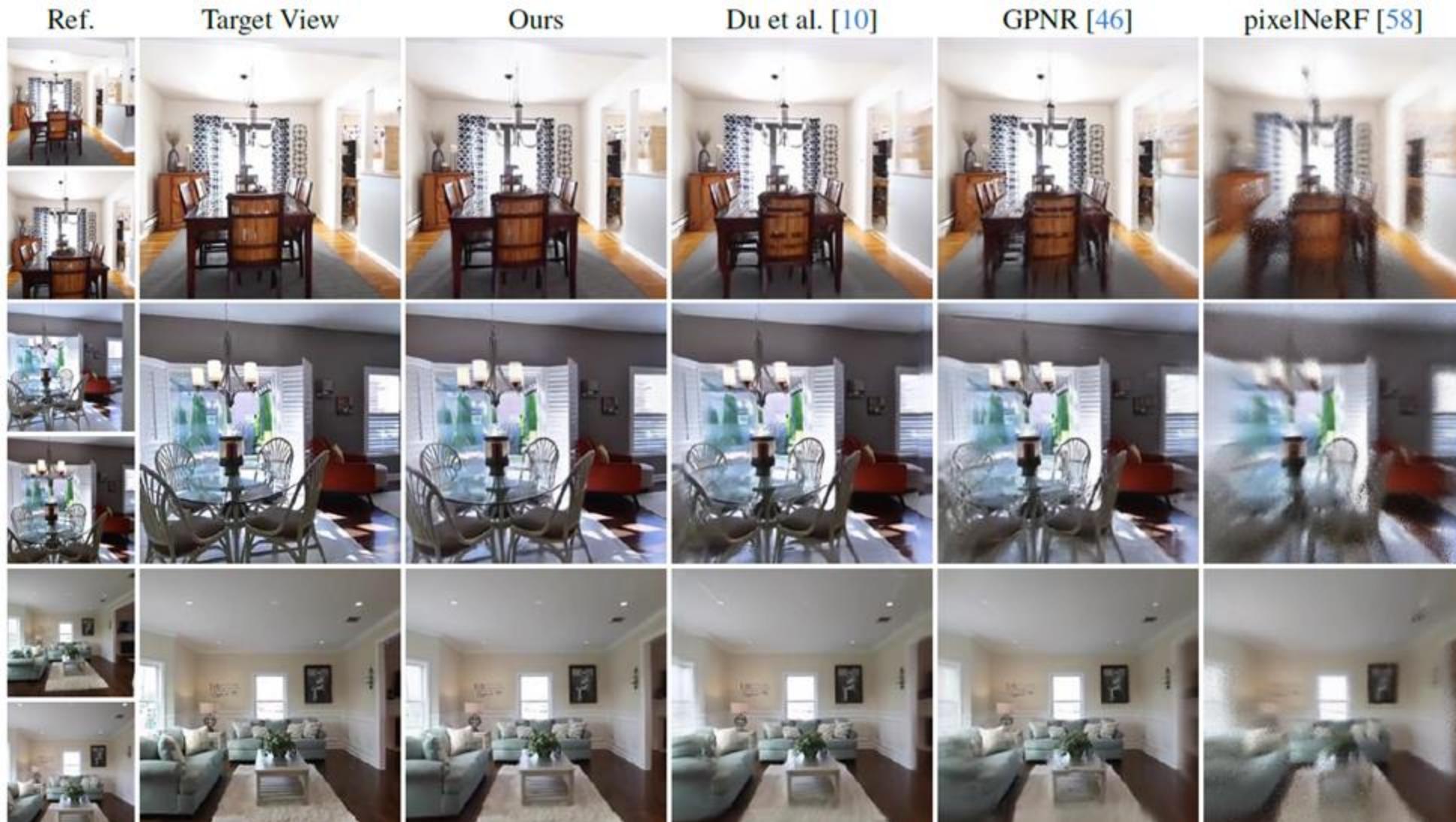
- 1: $(\phi, \delta, \Sigma, \mathbf{S}) = f(\mathbf{F}[\mathbf{u}])$ \triangleright predict depth probabilities ϕ and offsets δ , covariance Σ , spherical harmonics coefficients \mathbf{S}
- 2: $z \sim p_\phi(z)$ \triangleright Sample depth bucket index z from discrete probability distribution parameterized by ϕ
- 3: $\mu = \mathbf{o} + (b_z + \delta_z)\mathbf{d}_u$ \triangleright Compute Gaussian mean μ by unprojecting with depth b_z adjusted by bucket offset δ_z
- 4: $\alpha = \phi_z$ \triangleright Set Gaussian opacity α according to probability of sampled depth (Sec. 4.2).
- 5: **return** $(\mu, \Sigma, \alpha, \mathbf{S})$



Quantitative Comparison

	ACID			RealEstate10k			Inference Time (s)		Memory (GB)	
	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	Encode \downarrow	Render \downarrow	Training \downarrow	Inference \downarrow
Ours	28.27	0.843	0.146	26.09	0.863	0.136	0.102	0.002	14.4	3.002
Du et al. [10]	<u>26.88</u>	<u>0.799</u>	<u>0.218</u>	<u>24.78</u>	<u>0.820</u>	<u>0.213</u>	0.016	<u>1.309</u>	<u>314.3</u>	19.604
GPNR [46]	25.28	0.764	0.332	24.11	0.793	0.255	N/A	13.340	3789.9	19.441
pixelNeRF [58]	20.97	0.547	0.533	20.43	0.589	0.550	<u>0.005</u>	5.294	436.7	<u>3.962</u>

Qualitative Comparison



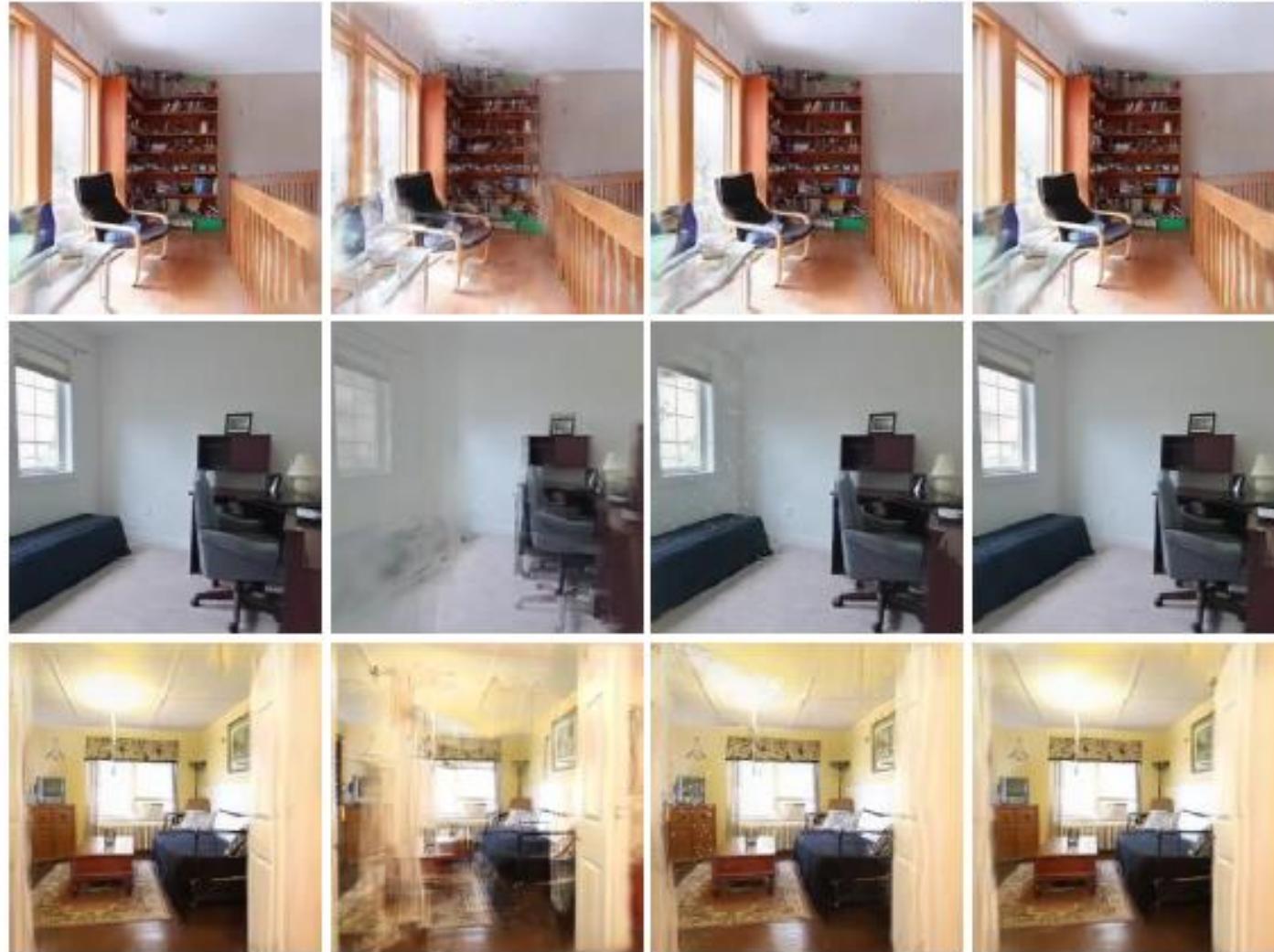
Ablation

Ours

No Epipolar

No Sampling

Depth Reg.

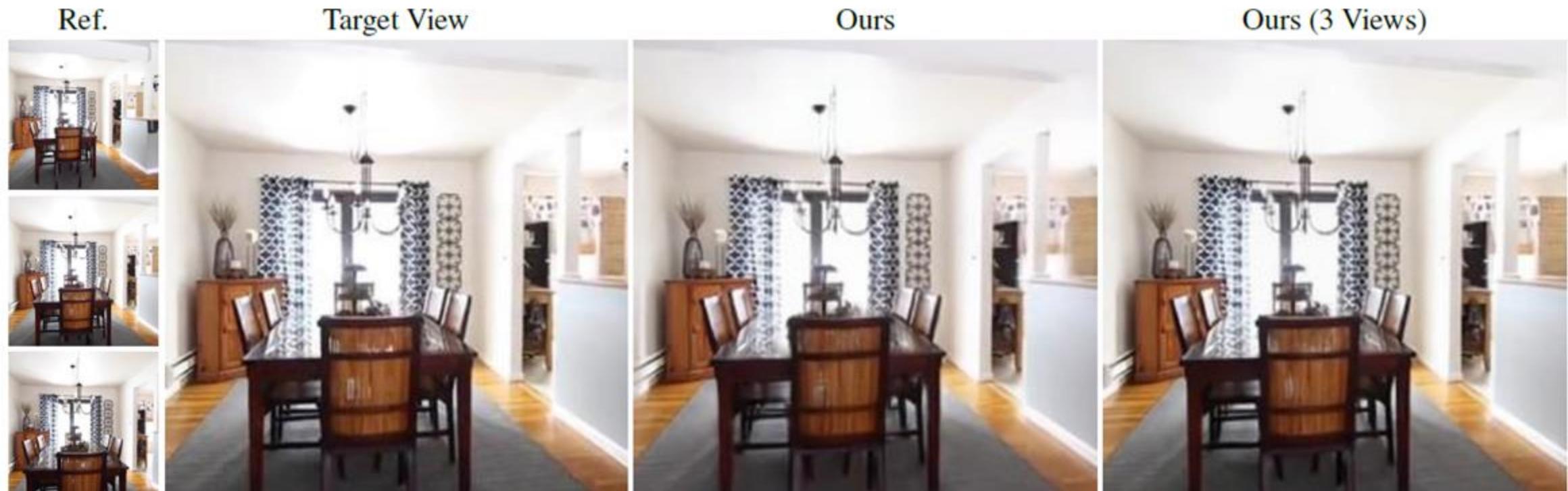


Attention Visualization

Limitations

- Rather than fusing or de-duplicating Gaussians observed from both reference views, it simply outputs the union of the Gaussians predicted from each view.
- it does not address generative modelling of unseen parts of the scene.
- When extended to many reference views, their epipolar attention mechanism becomes prohibitively expensive in terms of memory.

Additional Results



Conclusions

- It is an original approach to the problem of with only two input images taken from different points of view, synthetize novel views.
- it uses a pipeline of pre-image encoder, followed by epipolar sampling, epipolar attention and gaussian prediction.
- They claim that their work at inference time is significantly faster than prior work on generalizable novel view synthesis while producing an explicit 3D scene representation.
- They claim that to solve the problem of local minima that arises in primitive-based function regression, they introduced a novel parameterization of primitive location via a dense probability distribution and introduced a novel reparameterization trick to backpropagate gradients into the parameters of this distribution.

Conclusions

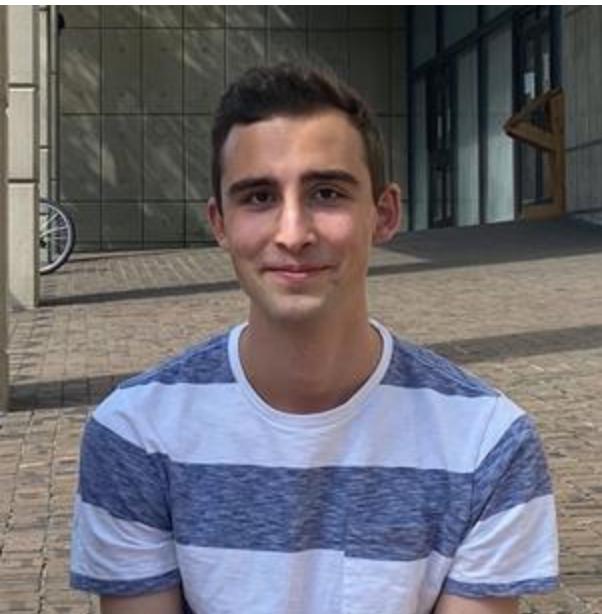
- They claim that their framework is general, and they hope that their work inspires follow-up work on prior-based inference of primitive-based representations across applications.
- They suggest for future to leverage their model for generative modelling by combining it with diffusion models or to remove the need for camera poses to enable large-scale training.
- Their model resolve scale ambiguity.
- Strongly accept.

Archeologist

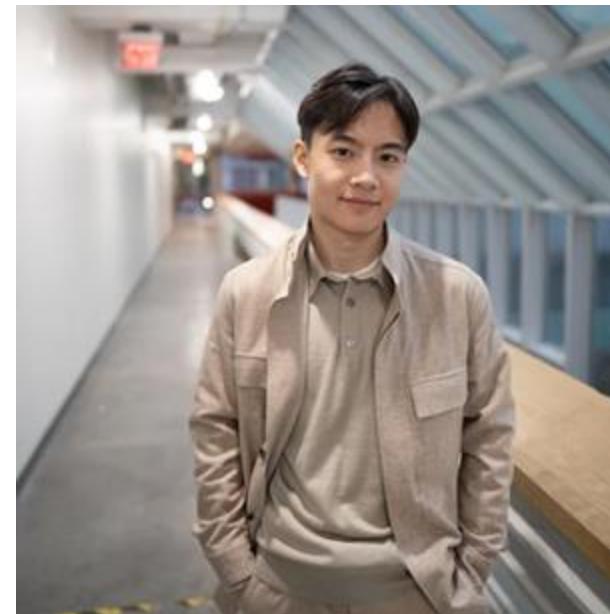
Davi Guimarães

Um pouco sobre os autores

Vincent Sitzmann



David Charatan



Sizhe Li

Andrea Tagliasacchi

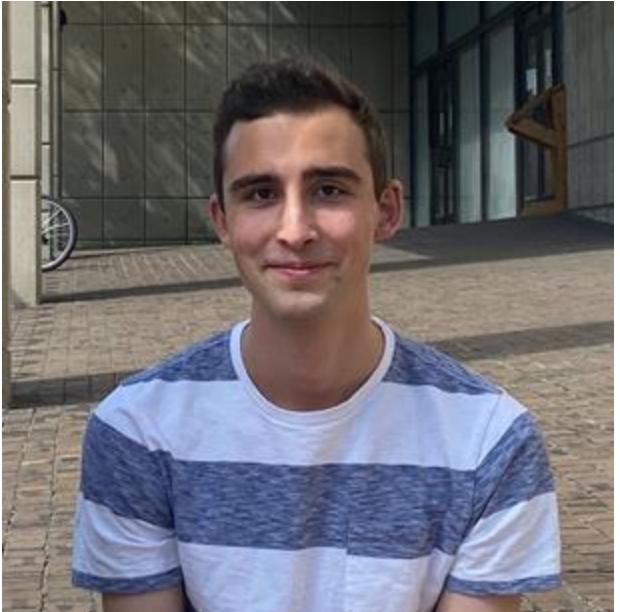
Vincent Sitzmann

Professor assistente atuando no MIT EECS e liderando o Scene Representation Group.

Fez seu doutorado em Stanford e pós-doutorado em MIT CSAIL.

Possui 3 papers aceitos no CVPR e 10 aceitos no NeurIPS. Também é um dos autores do paper Flowmap.

David Charatan



Aluno de doutorado
no MIT EECS.

Um dos autores do FlowMap. 1 paper
aceito no CVPR (PixelSplat), 1 paper
aceito no SIGGRAPH e 1 paper aceito
no 3DV.

Sizhe Li

Aluno de doutorado
no MIT CSAIL.

1 paper aceito no CVPR (PixelSplat) e 2
aceitos no ICLR.

Andrea Tagliasacchi

Atua como professor auxiliar na universidade Simon Fraser, cientista pesquisador do Google DeepMind e professor auxiliar no departamento de ciência da computação da universidade de Toronto.

Dentre seus mentores, está Geoffrey Hinton, ganhador do Nobel da física deste ano junto com John Hopfield.

Andrea possui 28 papers aceitos no CVPR, 5 papers aceitos na ECCV e 7 papers aceitos na NeurIPS.

Tendo ganhado o SGP best paper award de 2015, o CVPR best student paper award de 2020, e o CVPR best paper award de 2024.

Contexto

Que problema exatamente eles estavam tentando resolver?

Prior-based 3D Reconstruction and View Synthesis

Reconstruções 3D de qualidade de uma cena próxima da câmera usando poucas imagens já estavam sendo feitas.

Reconstruções 3D de boa qualidade não limitadas pela distância da cena e a câmera eram difíceis de serem feitas com poucas imagens.

Single-View View Synthesis with Multiplane Images

Richard Tucker Noah Snavely
Google Research

Pushing the Boundaries of View Extrapolation with Multiplane Images

Pratul P. Srinivasan¹ Richard Tucker² Jonathan T. Barron²
Ravi Ramamoorthi³ Ren Ng¹ Noah Snavely²

¹UC Berkeley, ²Google Research, ³UC San Diego

Prior-based 3D Reconstruction and View Synthesis

Preservar a localidade end-to-end e a equivariância de deslocamento entre o encoder e a representação de cena por meio de pixel-aligned features e transformers, possibilitou a generalização de cenas ilimitadas.

IBRNet: Learning Multi-View Image-Based Rendering

Qianqian Wang^{1,2} Zhicheng Wang¹ Kyle Genova^{1,3} Pratul Srinivasan¹ Howard Zhou¹
Jonathan T. Barron¹ Ricardo Martin-Brualla¹ Noah Snavely^{1,2} Thomas Funkhouser^{1,3}

¹Google Research ²Cornell Tech, Cornell University ³Princeton University

pixelNeRF: Neural Radiance Fields from One or Few Images

Alex Yu

Vickie Ye

Matthew Tancik
UC Berkeley

Angjoo Kanazawa

Prior-based 3D Reconstruction and View Synthesis

Cost volume

MVSNeRF

Stereo Radiance Fields

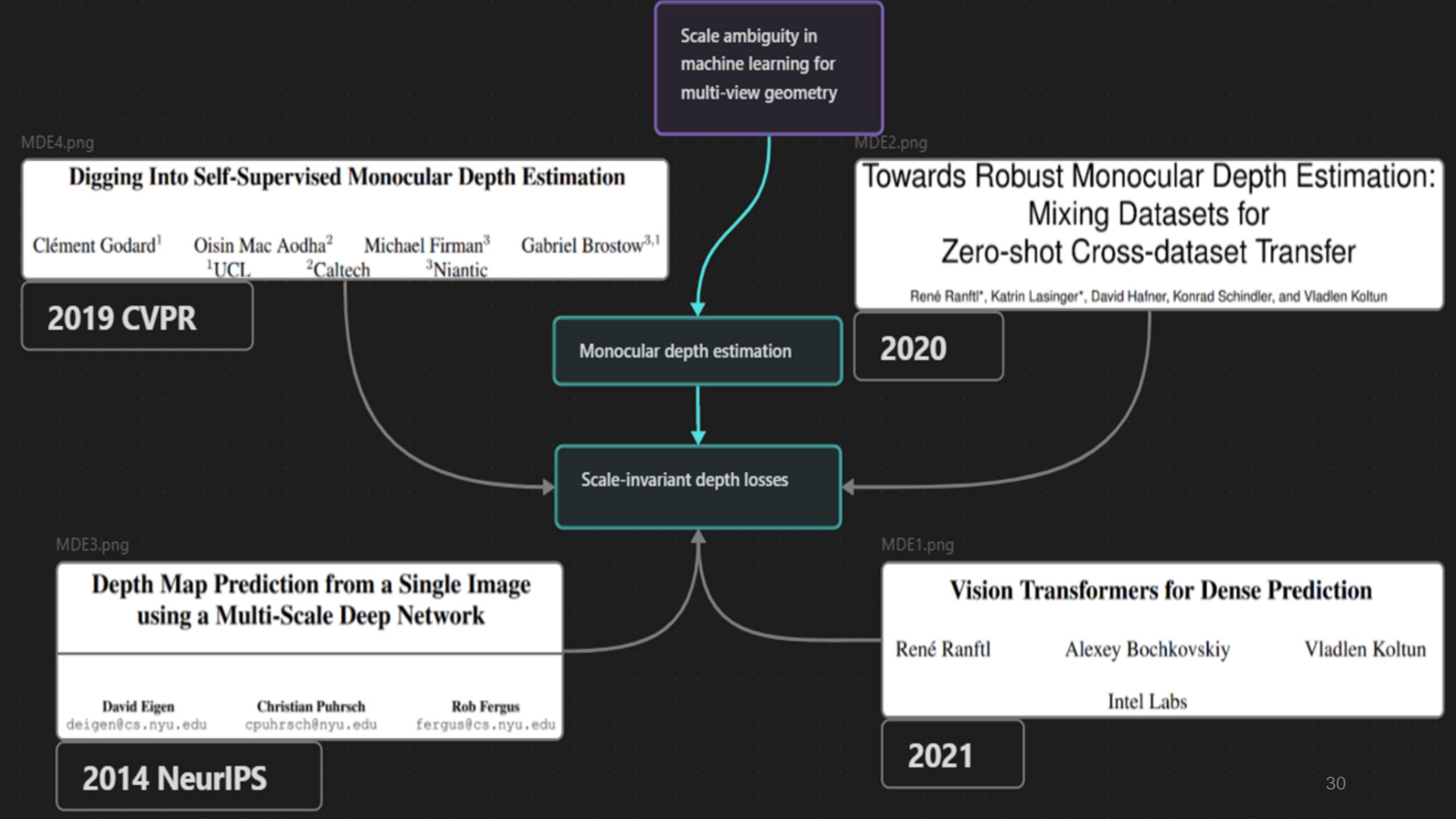
GeoNeRF

Light field scene representation

Scene Representation Transformer

Light Field Networks

Light Field Neural Rendering



Vincent!

Scale ambiguity in
machine learning for
multi-view geometry

NVS1.png

Diffusion with Forward Models: Solving Stochastic Inverse Problems Without Direct Supervision

Ayush Tewari^{1*} Tianwei Yin^{1*} George Cazenavette¹ Semon Rezhikov⁴
Joshua B. Tenenbaum^{1,2,3} Frédo Durand¹ William T. Freeman¹ Vincent Sitzmann¹
¹MIT CSAIL ²MIT BCS ³MIT CBMM ⁴Princeton IAS

2023 NeurIPS

Redimensione cenas 3D
de acordo com
heurísticas em
estatísticas de
profundidade e
condicione seus encoders
na escala da cena.

Pasted image 20241028131852.png

Generative Novel View Synthesis with 3D-Aware Diffusion Models

Eric R. Chan ^{*†1,2}, Koki Nagano^{*2}, Matthew A. Chan^{*2}, Alexander W. Bergman^{*1}, Jeong Joon Park^{*1},
Axel Levy¹, Miika Aittala², Shalini De Mello², Tero Karras², and Gordon Wetzstein¹

¹Stanford University ²NVIDIA

2023 3DV

2023

ZeroNVS: Zero-Shot 360-Degree View Synthesis from a Single Image

Kyle Sargent¹, Zizhang Li¹, Tanmay Shah², Charles Herrmann², Hong-Xing Yu¹,
Yunzhi Zhang¹, Eric Ryan Chan¹, Dmitry Lagun², Li Fei-Fei¹, Deqing Sun², Jiajun Wu¹

¹Stanford University, ²Google Research

Scale ambiguity in
machine learning for
multi-view geometry

ET.png

Epipolar Transformers

Yihui He* Rui Yan* Katerina Fragkiadaki
Carnegie Mellon University
Pittsburgh, PA 15213

Shoou-I Yu
Facebook Reality Labs
Pittsburgh, PA 15213

2020 CVPR

PixelSplat

Construímos um multi-view encoder que pode inferir a escala da cena usando um transformador epipolar.

Artigos subsequentes

LGM: Large Multi-View Gaussian Model for High-Resolution 3D Content Creation

ECCV 2024 (Oral)

Jiaxiang Tang¹, Zhaoxi Chen², Xiaokang Chen¹, Tengfei Wang³, Gang Zeng¹, Ziwei Liu²

¹ Peking University ² S-Lab, Nanyang Technological University ³ Shanghai AI Lab

GS-LRM: LARGE RECONSTRUCTION MODEL FOR 3D GAUSSIAN SPLATTING

Kai Zhang^{*1}, Sai Bi^{*1}, Hao Tan^{*1}, Yuanbo Xiangli², Nanxuan Zhao¹,
Kalyan Sunkavalli¹, Zexiang Xu¹

^{*}(Equal contribution)

¹Adobe Research ²Cornell University

Outros papers que tratam do mesmo problema, reconstrução de cenas 3D com poucas imagens.

Esses dois papers ainda possuem o ponto forte de resolverem esse problema sem a necessidade da posição das câmeras.

No Pose, No Problem: Surprisingly Simple 3D Gaussian Splats from Sparse Unposed Images

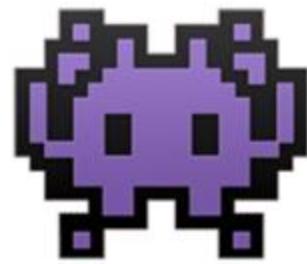
ICLR 2025 Conference Submission 3116 Authors

DUSt3R: Geometric 3D Vision Made Easy

Shuzhe Wang, [Vincent Leroy](#), Yohann Cabon, Boris Chidlovskii, Jérôme Revaud

The IEEE / CVF Computer Vision and Pattern Recognition Conference (CVPR), Seattle, USA,
17-21 June, 2024

Hacker



Vitor Pereira Matias

General code

- on the image:
 - left: method architecture
 - right: .py files of that method

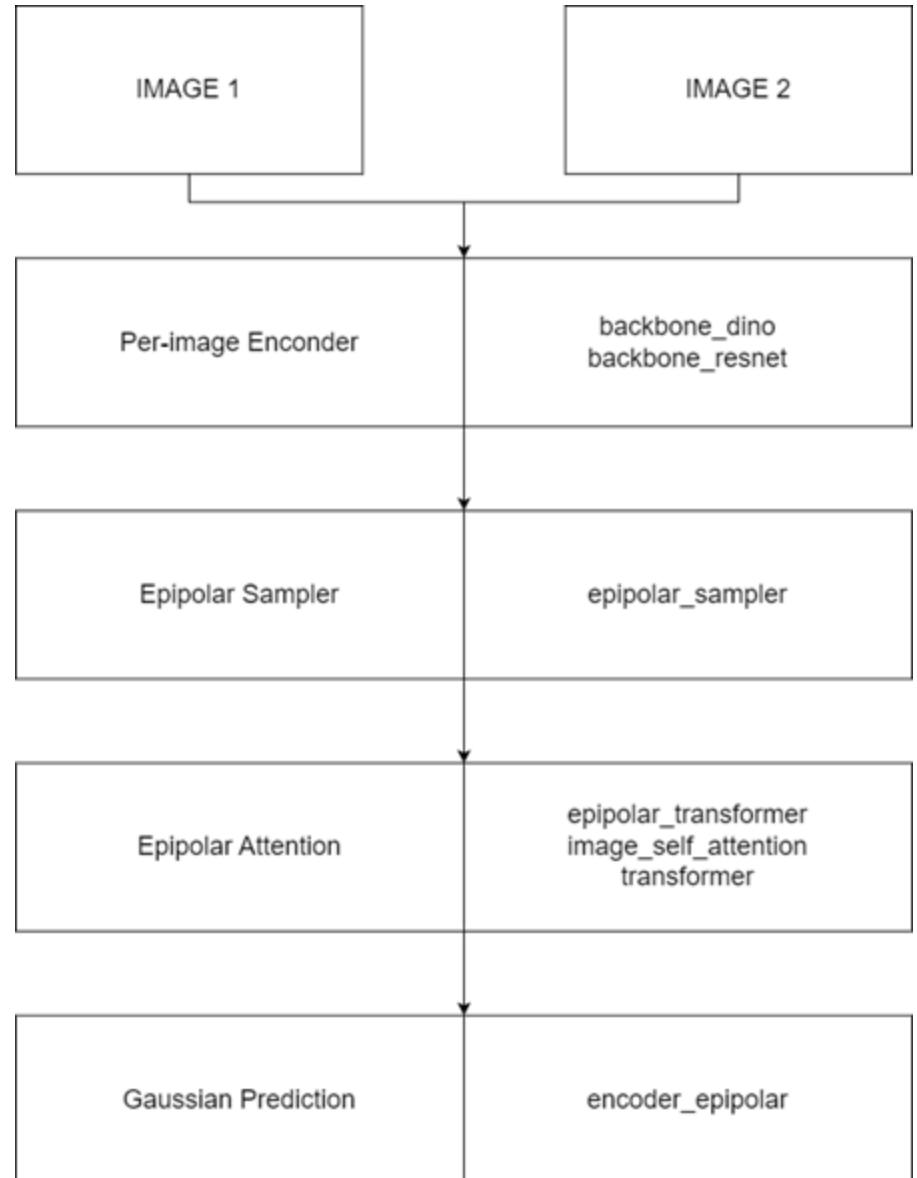
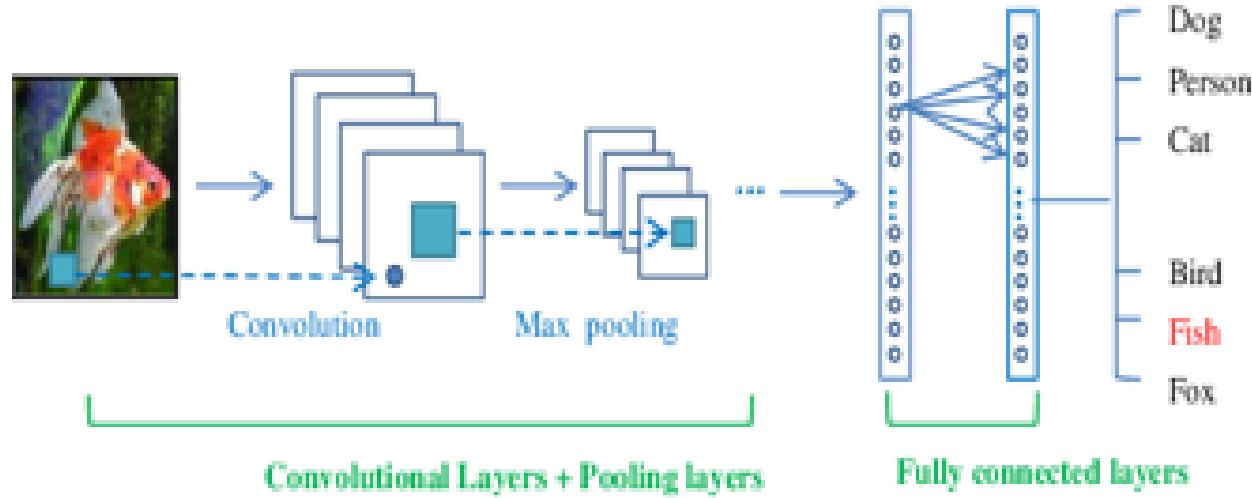


Image Features



Design of Convolution Neural Network

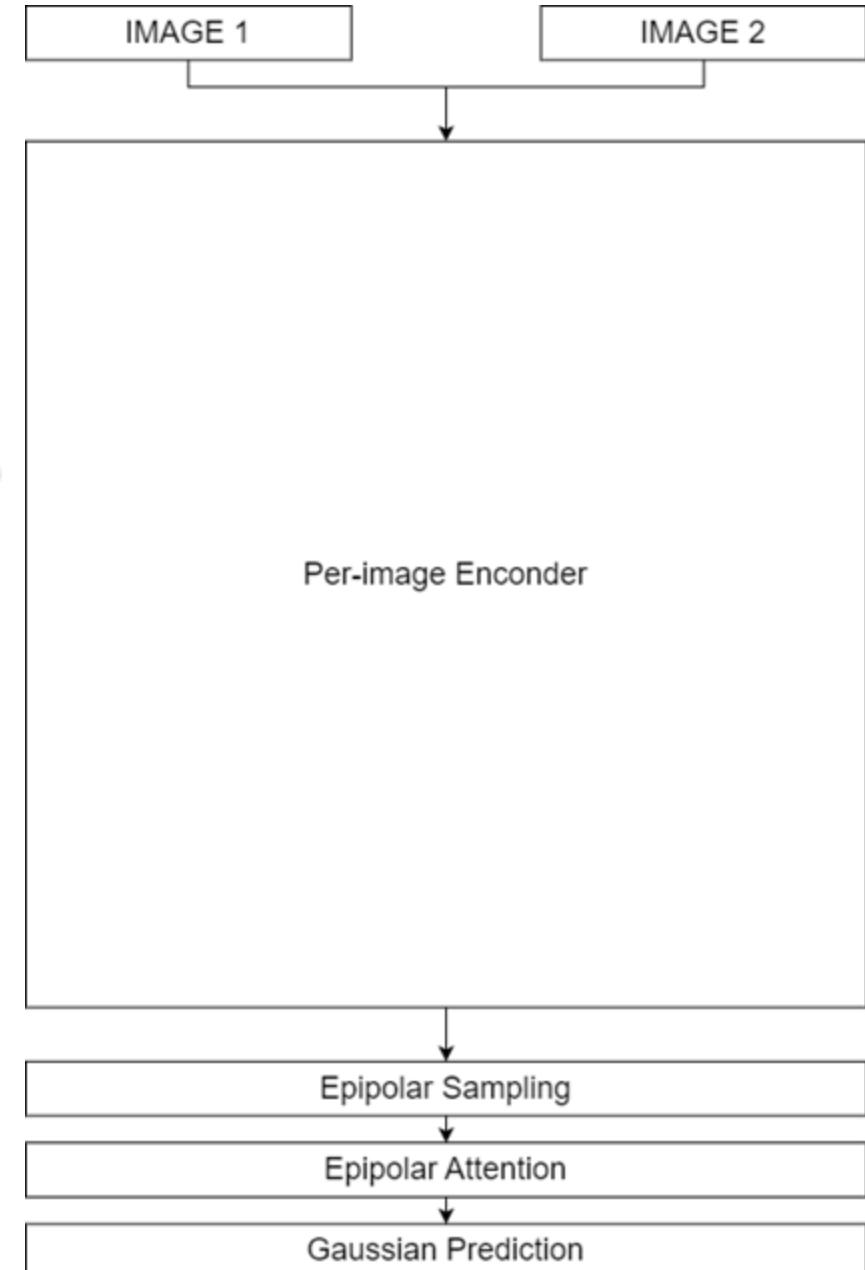
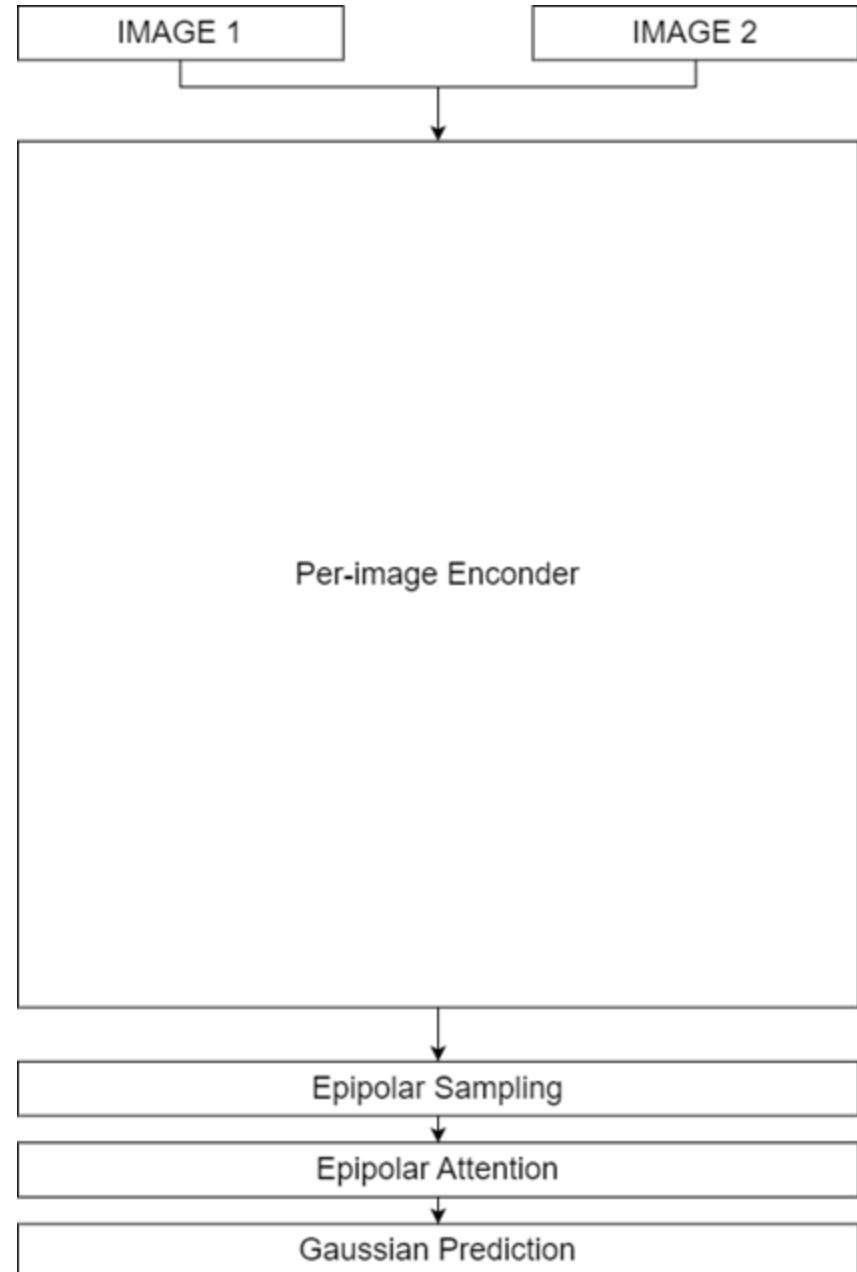
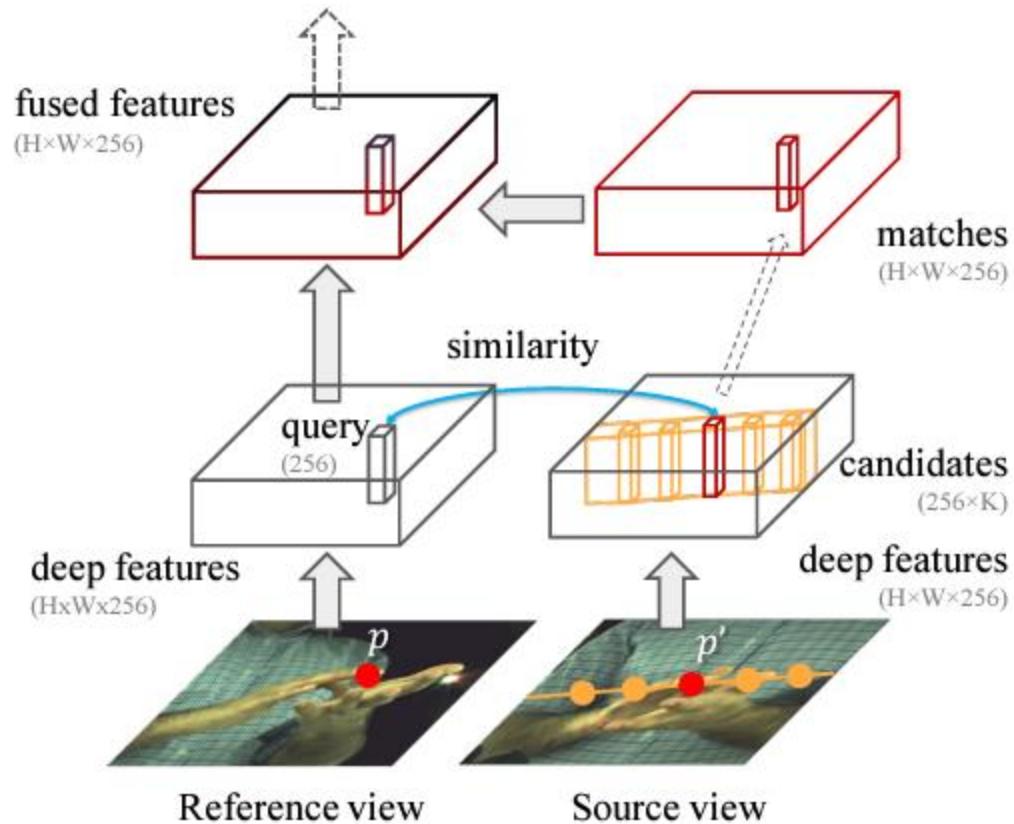


Image Features

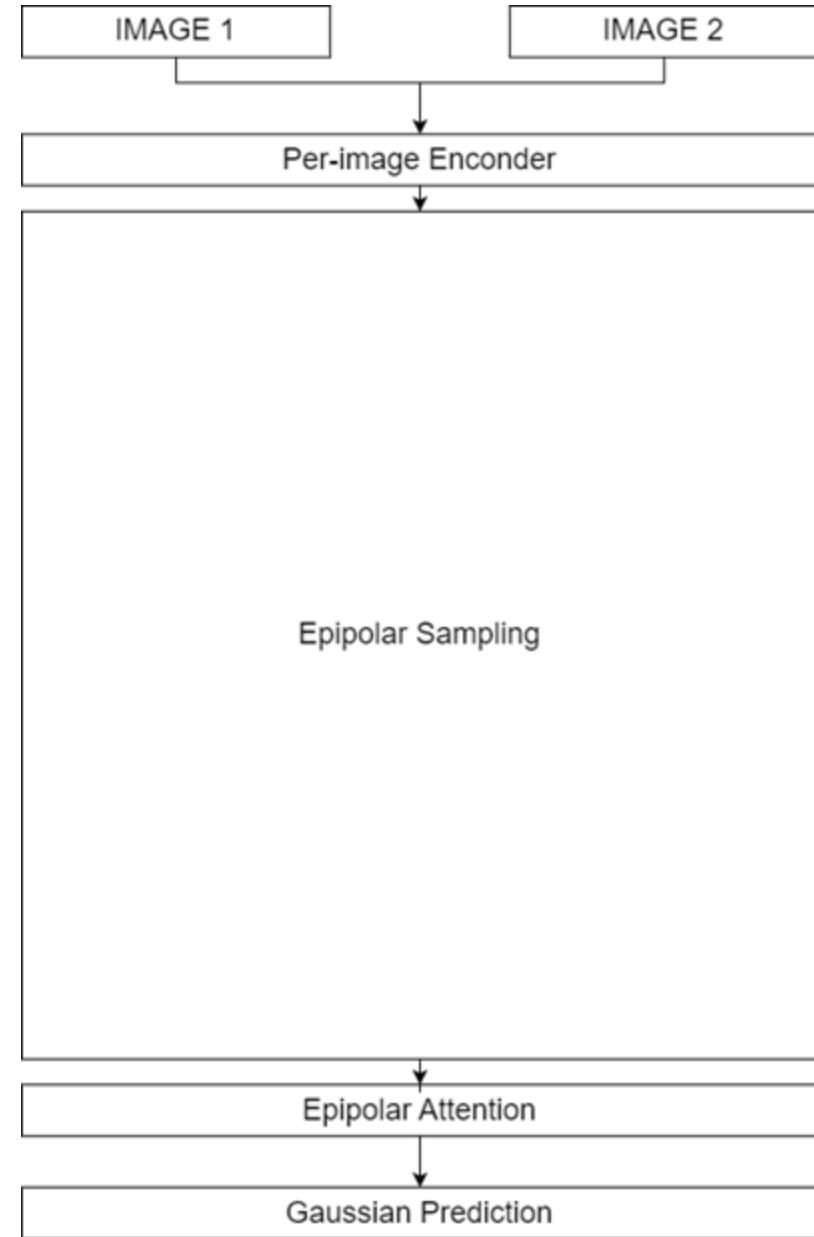
```
class BackboneDino(Backbone[BackboneDinoCfg]):  
    def __init__(self, cfg: BackboneDinoCfg, d_in: int) -> None: ...  
  
    def forward(        David Charatan, 10 months ago • Release code.  
        self,  
        context: BatchedViews,  
    ) -> Float[Tensor, "batch view d_out height width"]:  
        # Compute features from the DINO-pretrained resnet50.  
        resnet_features = self.resnet_backbone(context)  
  
        # Compute features from the DINO-pretrained ViT.  
        b, v, _, h, w = context["image"].shape  
        assert h % self.patch_size == 0 and w % self.patch_size == 0  
        tokens = rearrange(context["image"], "b v c h w -> (b v) c h w")  
        tokens = self.dino.get_intermediate_layers(tokens)[0]  
        global_token = self.global_token_mlp(tokens[:, 0])  
        local_tokens = self.local_token_mlp(tokens[:, 1:])  
  
        # Repeat the global token to match the image shape.  
        global_token = repeat(global_token, "(b v) c -> b v c h w", b=b,  
        h=h, w=w)  
  
        # Repeat the local tokens to match the image shape.  
        local_tokens = repeat(...  
  
    return resnet_features + local_tokens + global_token
```



Epipolar Samples from rays



- source paper: Epipolar Transformer



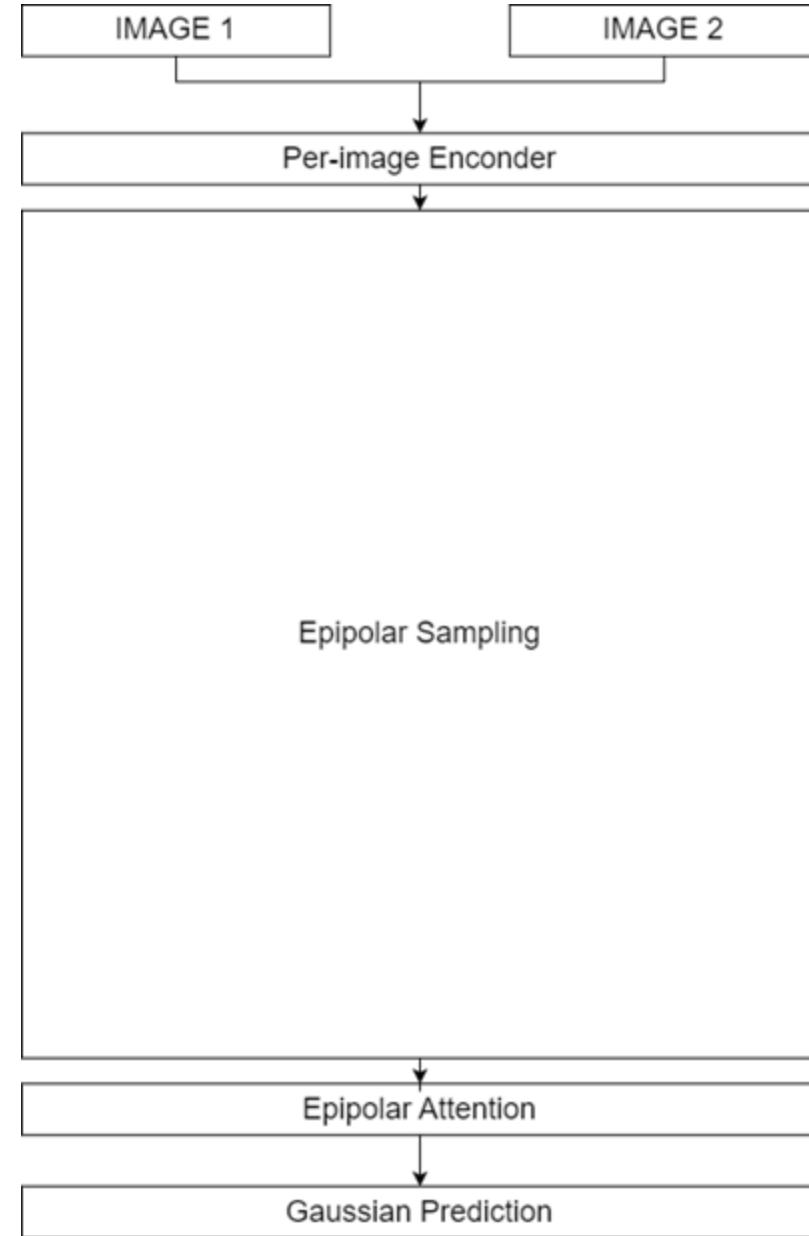
Epipolar Samples from rays

```
class EpipolarSampler(nn.Module):
    num_samples: int
    index_v: Index
    transpose_v: Index
    transpose_ov: Index

    def __init__(...):
        ...

    def forward(
        self,
        images: Float[Tensor, "batch view channel height width"],
        extrinsics: Float[Tensor, "batch view 4 4"],
        intrinsics: Float[Tensor, "batch view 3 3"],
        near: Float[Tensor, "batch view"],
        far: Float[Tensor, "batch view"],
    ) -> EpipolarSampling:
        device = images.device
        b, v, _, _, _ = images.shape
        David Charatan, 10 months ago • Release code.
        # Generate the rays that are projected onto other views.
        xy_ray, origins, directions = self.generate_image_rays(
            images, extrinsics, intrinsics
        )

        # Select the camera extrinsics and intrinsics to project onto. For each
        # context
        # view, this means all other context views in the batch.
        projection = project_rays(
            rearrange(origins, "b v r xyz -> b v () r xyz"),
            rearrange(directions, "b v r xyz -> b v () r xyz"),
            rearrange(self.collect(extrinsics), "b v ov i j -> b v ov () i j"),
            rearrange(self.collect(intrinsics), "b v ov i j -> b v ov () i j"),
            rearrange(near, "b v -> b v () ()"),
            rearrange(far, "b v -> b v () ()"),
        )
    )
```



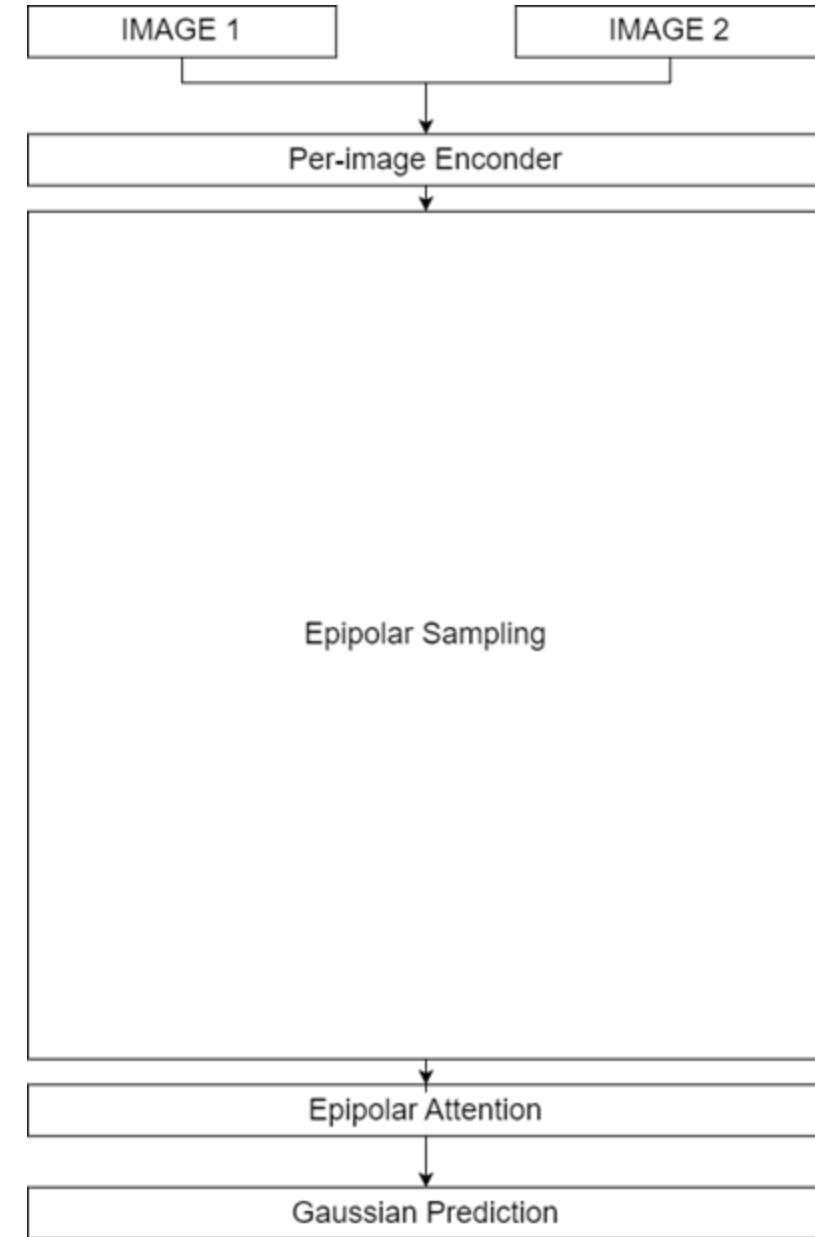
Epipolar Samples ...

```
# Generate sample points.
s = self.num_samples
sample_depth = (torch.arange(s, device=device) + 0.5) / s
sample_depth = rearrange(sample_depth, "s -> s ()")
xy_min = projection["xy_min"].nan_to_num(posinf=0, neginf=0)
xy_min = xy_min * projection["overlaps_image"][:, None]
xy_min = rearrange(xy_min, "b v ov r xy -> b v ov r () xy")
xy_max = projection["xy_max"].nan_to_num(posinf=0, neginf=0)
xy_max = xy_max * projection["overlaps_image"][:, None]
xy_max = rearrange(xy_max, "b v ov r xy -> b v ov r () xy")
xy_sample = xy_min + sample_depth * (xy_max - xy_min)

samples = self.transpose(xy_sample)
samples = F.grid_sample(
    rearrange(images, "b v c h w -> (b v) c h w"),
    rearrange(2 * samples - 1, "b v ov r s xy -> (b v) (ov r s) () xy"),
    mode="bilinear",
    padding_mode="zeros",
    align_corners=False,
)
samples = rearrange(
    samples, "(b v) c (ov r s) () -> b v ov r s c", b=b, v=v, ov=v - 1,
    s=s
)
samples = self.transpose(samples)

# Zero out invalid samples.
samples = samples * projection["overlaps_image"][:, None, None]

half_span = 0.5 / s
return EpipolarSampling(
```

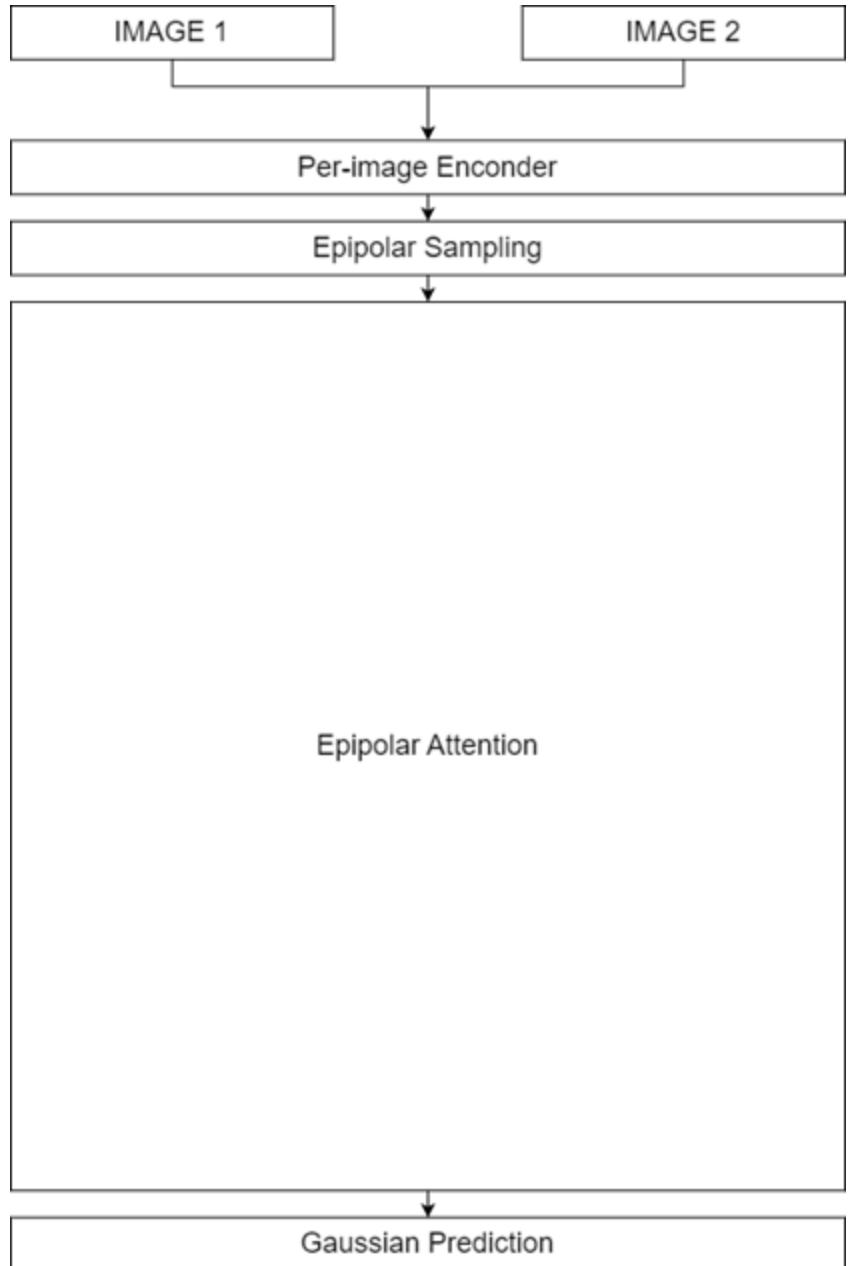


The transformer

- forward method inputs:
 - self, features, extrinsics, intrinsics, near, far

```
class EpipolarTransformer(nn.Module):
    sampling = self.epipolar_sampler.forward(
        ...
        q = rearrange(features, "b v c h w -> (b v h w) () c")
        features = self.transformer.forward(
            q,
            rearrange(kv, "b v ov r s c -> (b v r) (s ov) c"),
            b=b,
            v=v,
            h=h // self.cfg.downscale,
            w=w // self.cfg.downscale,
        )
        features = rearrange(
            features,
            "(b v h w) () c -> b v c h w",
            b=b,
            v=v,
            h=h // self.cfg.downscale,
            w=w // self.cfg.downscale,
        )

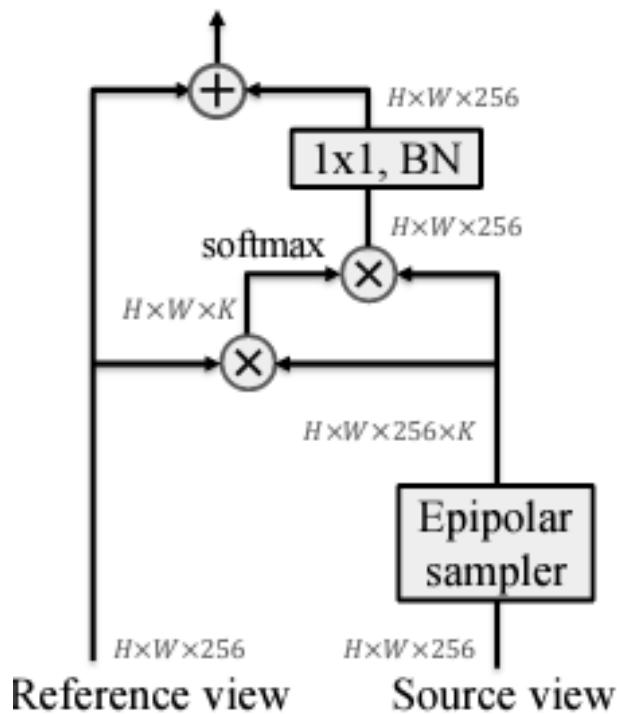
        # If needed, apply upscaling.
        if self.upscaler is not None:
            features = rearrange(features, "b v c h w -> (b v) c h w")
            features = self.upscaler(features)
            features = self.upscale_refinement(features) + features
            features = rearrange(features, "(b v) c h w -> b v c h w", b=b, v=v)
    )
```



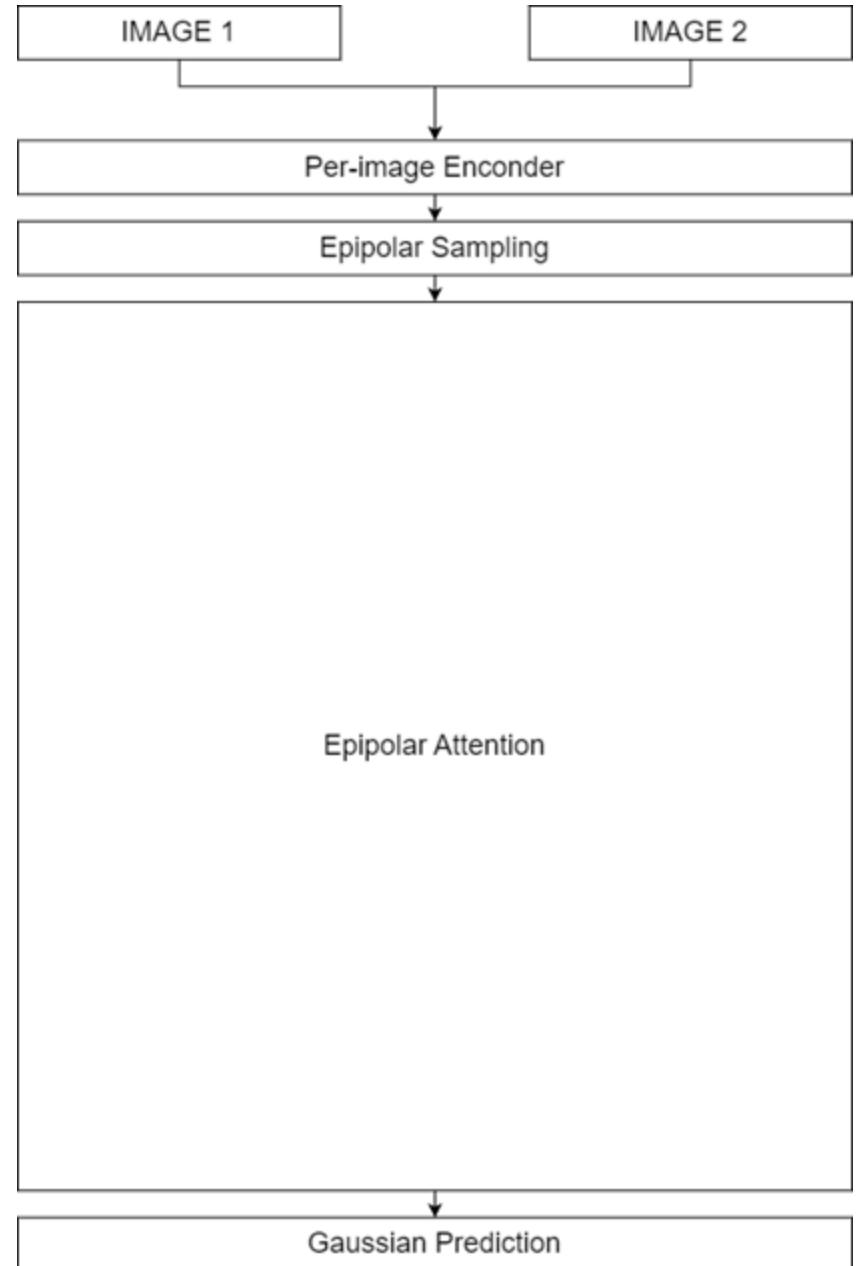
- for each input image F and the other is called $\sim F$

$$\mathbf{s} = \tilde{\mathbf{F}}[\tilde{\mathbf{u}}_l] \oplus \gamma(\tilde{d}_{\tilde{\mathbf{u}}_l})$$
$$\mathbf{q} = \mathbf{Q} \cdot \mathbf{F}[\mathbf{u}], \quad \mathbf{k}_l = \mathbf{K} \cdot \mathbf{s}, \quad \mathbf{v}_l = \mathbf{V} \cdot \mathbf{s},$$

The transformer



- source paper: Epipolar Transformer



Attention

```
class Attention(nn.Module):
    def __init__(...):

        def forward(self, x, z=None):
            if z is None:
                qkv = self.to_qkv(x).chunk(3, dim=-1)
            else:
                q = self.to_q(x)
                k, v = self.to_kv(z).chunk(2, dim=-1)
                qkv = (q, k, v)

            q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=self.
heads), qkv)

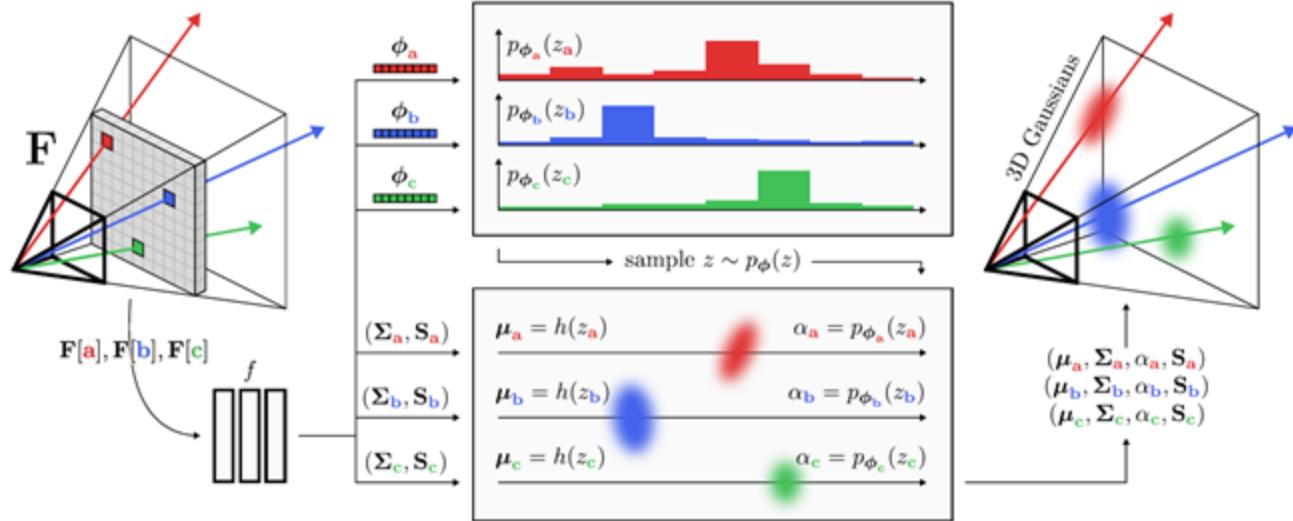
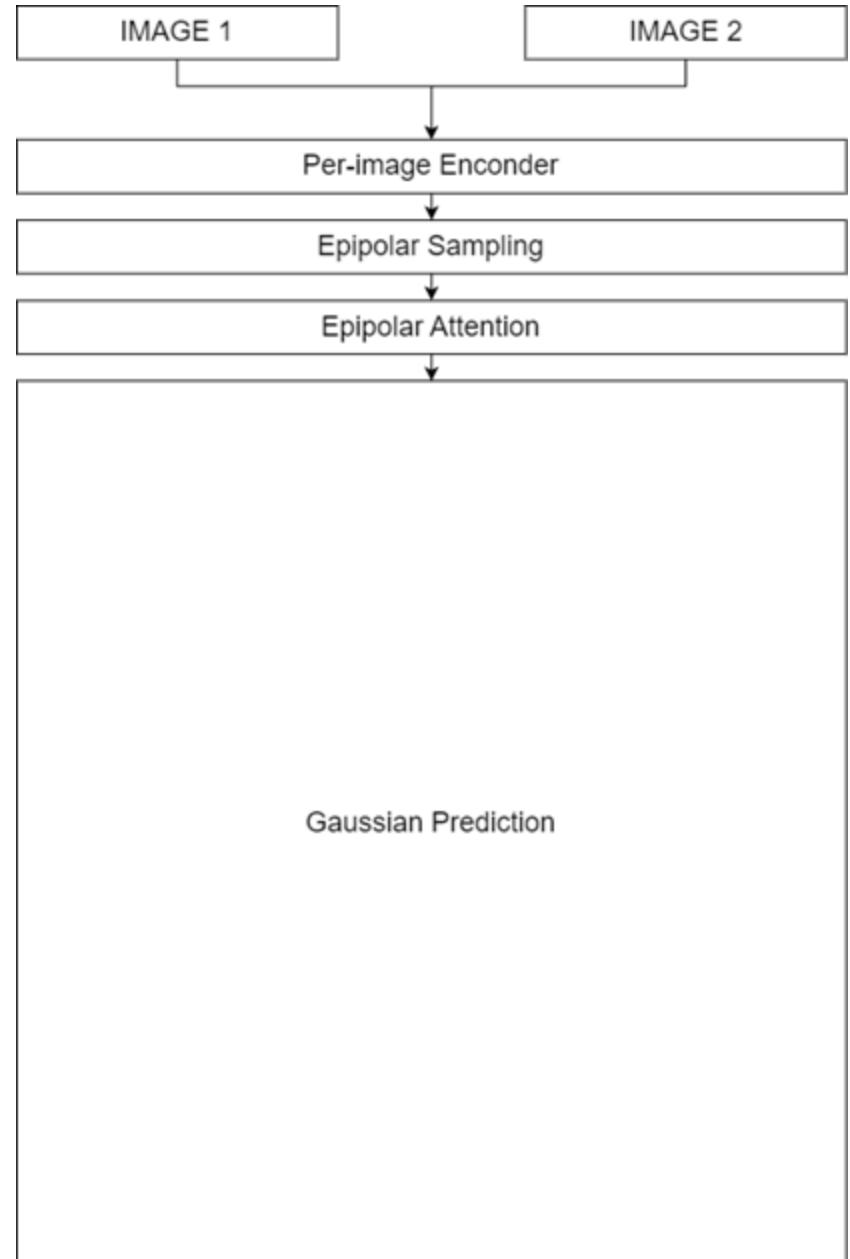
            dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale

            attn = self.attend(dots)

            out = torch.matmul(attn, v)
            out = rearrange(out, "b h n d -> b n (h d)")
            return self.to_out(out)
```

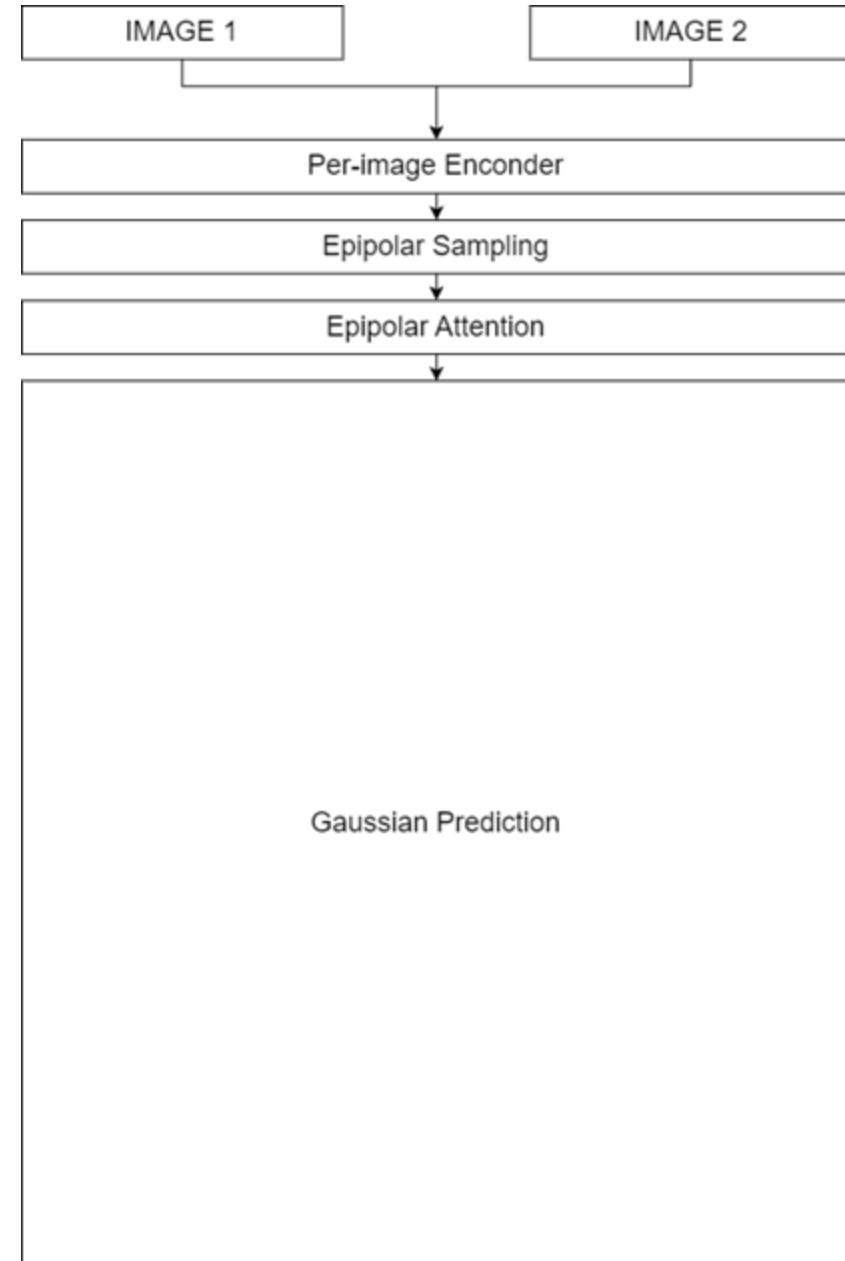


Generating Gaussians



Generating Gaussians

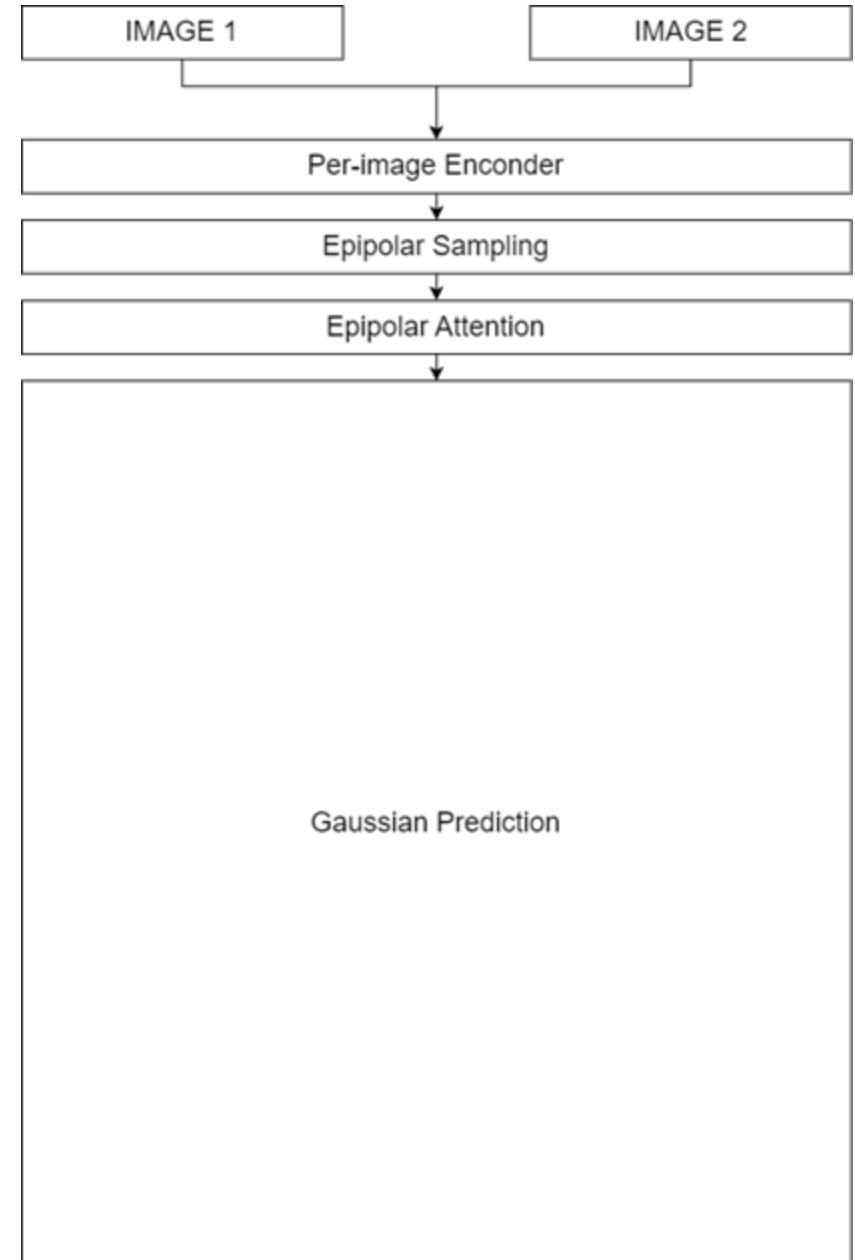
```
class EncoderEpipolar(Encoder[EncoderEpipolarCfg]):  
    backbone: Backbone  
    backbone_projection: nn.Sequential  
    epipolar_transformer: EpipolarTransformer | None  
    depth_predictor: DepthPredictorMonocular  
    to_gaussians: nn.Sequential  
    gaussian_adapter: GaussianAdapter  
    high_resolution_skip: nn.Sequential  
  
    def __init__(self, cfg: EncoderEpipolarCfg) -> None:  
        ...  
  
    def map_pdf_to_opacity(...)  
  
    def forward(  
        self,  
        context: dict,  
        global_step: int,  
        deterministic: bool = False,  
        visualization_dump: Optional[dict] = None,  
    ) -> Gaussians:  
        device = context["image"].device  
        b, v, _, h, w = context["image"].shape  
  
        # Encode the context images.  
        features = self.backbone(context)  
        features = rearrange(features, "b v c h w -> b v h w c")  
        features = self.backbone_projection(features)  
        features = rearrange(features, "b v h w c -> b v c h w")  
  
        # Run the epipolar transformer.  
        if self.cfg.use_epipolar_transformer:  
            ...  
            # Add the high-resolution skip connection.  
            skip = rearrange(context["image"], "b v c h w -> (b v) c h w")  
            skip = self.high_resolution_skip(skip)  
            features = features + rearrange(skip, "(b v) c h w -> b v c h w", b=b,  
                                         v=v)
```



Generating Gaussians

```
# Sample depths from the resulting features.
features = rearrange(features, "b v c h w -> b v (h w) c")
depths, densities = self.depth_predictor.forward(
    features,
    context["near"],
    context["far"],
    deterministic,
    1 if deterministic else self.cfg.gaussians_per_pixel,
)

# Convert the features and depths into Gaussians.
xy_ray, _ = sample_image_grid((h, w), device)
xy_ray = rearrange(xy_ray, "h w xy -> (h w) () xy")
gaussians = rearrange(
    self.to_gaussians(features),
    "... (srf c) -> ... srf c",
    srf=self.cfg.num_surfaces,
)
offset_xy = gaussians[..., :2].sigmoid()
pixel_size = 1 / torch.tensor((w, h), dtype=torch.float32,
device=device)
xy_ray = xy_ray + (offset_xy - 0.5) * pixel_size
gpp = self.cfg.gaussians_per_pixel
gaussians = self.gaussian_adapter.forward(
    rearrange(context["extrinsics"], "b v i j -> b v () () () i j"),
    rearrange(context["intrinsics"], "b v i j -> b v () () () i j"),
    rearrange(xy_ray, "b v r srf xy -> b v r srf () xy"),
    depths,
    self.map_pdf_to_opacity(densities, global_step) / gpp,
    rearrange(gaussians[..., 2:], "b v r srf c -> b v r srf () c"),
    (h, w),
)
```



Some sayings

- extrinsics, intrinsics, far, near, and other factors are user parameters
- github only explains training, evaluation and some tests
 - it does not state how to run on 2 images
 - it also does not show how to export .ply files

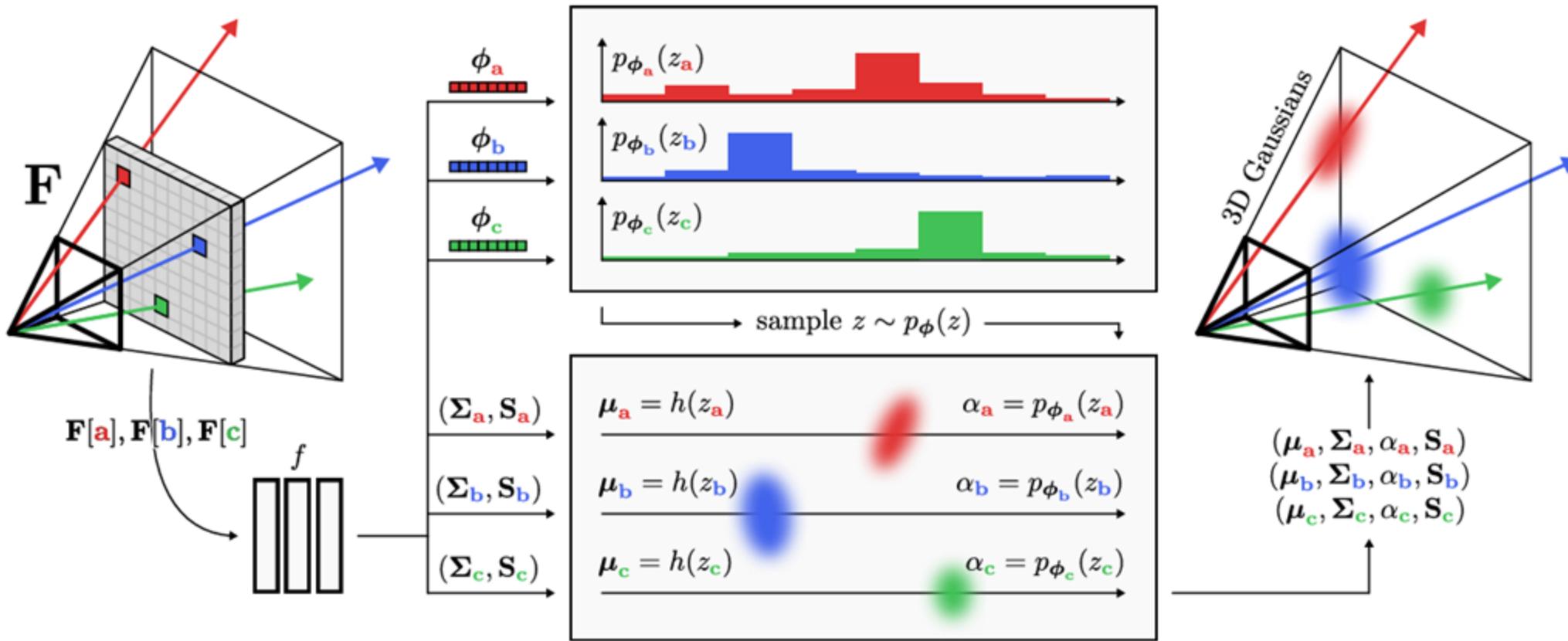
Running the code once

MVSplat vs PixelSplat

PhD Student

Fernando Pereira de Sá

1 - Research Proposition



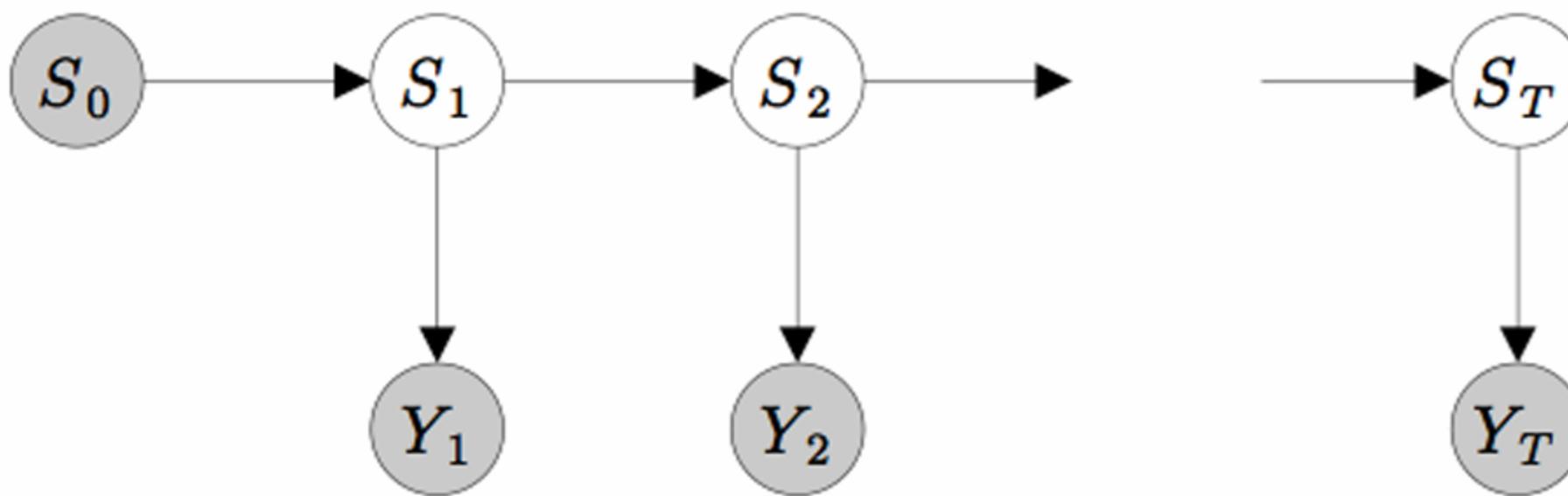
Algorithm 1 Probabilistic Prediction of a Pixel-Aligned Gaussian.

Require: Depth buckets $\mathbf{b} \in \mathbb{R}^Z$, feature $\mathbf{F}[\mathbf{u}]$ at pixel coordinate \mathbf{u} , camera origin of reference view \mathbf{o} , ray direction \mathbf{d}_u .

- 1: $(\phi, \delta, \Sigma, \mathbf{S}) = f(\mathbf{F}[\mathbf{u}])$ \triangleright predict depth probabilities ϕ and offsets δ , covariance Σ , spherical harmonics coefficients \mathbf{S}
- 2: $z \sim p_\phi(z)$ \triangleright Sample depth bucket index z from discrete probability distribution parameterized by ϕ
- 3: $\mu = \mathbf{o} + (\mathbf{b}_z + \delta_z)\mathbf{d}_u$ \triangleright Compute Gaussian mean μ by unprojecting with depth \mathbf{b}_z adjusted by bucket offset δ_z
- 4: $\alpha = \phi_z$ \triangleright Set Gaussian opacity α according to probability of sampled depth (Sec. 4.2).
- 5: **return** $(\mu, \Sigma, \alpha, \mathbf{S})$

1 - Research Proposition

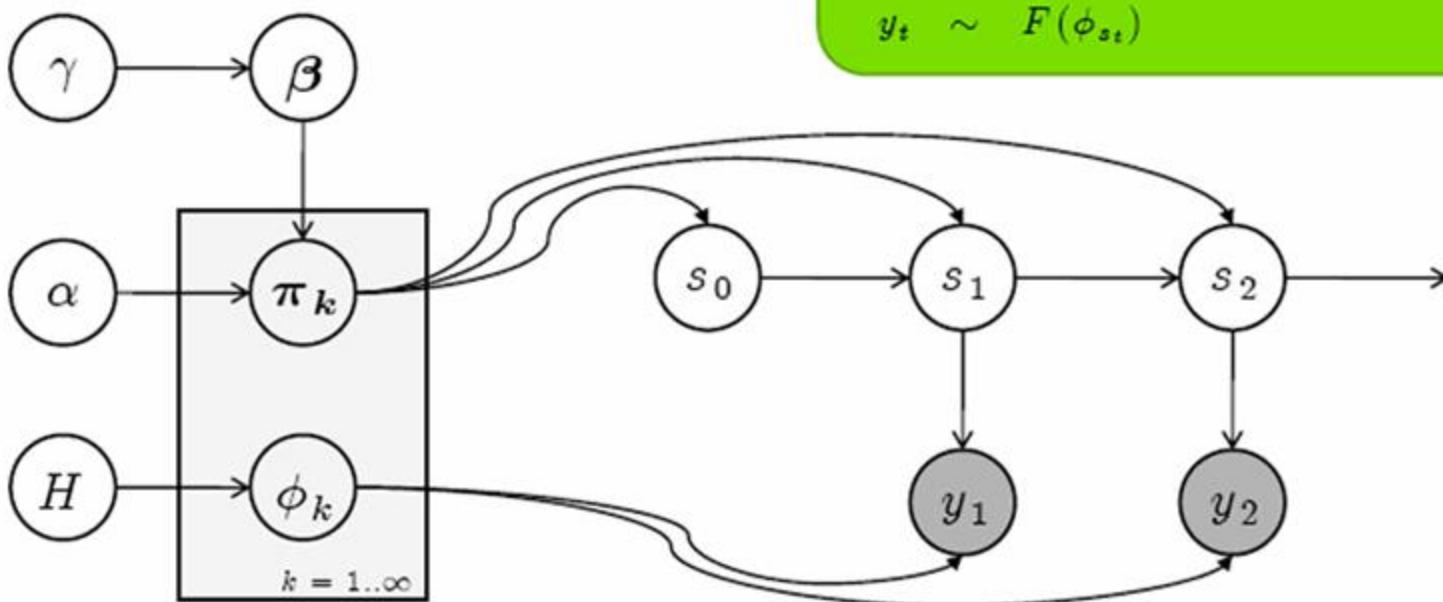
Hidden Markov Models



1 - Research Proposition

- Generative Model for iHMM

$$\begin{aligned}\boldsymbol{\beta} &\sim \text{Stick}(\gamma), \\ \boldsymbol{\phi}_k &\sim H, \\ \boldsymbol{\pi}_k &\sim \text{Dirichlet}(\boldsymbol{\alpha}\boldsymbol{\beta}), \\ s_t &\sim \text{Multinomial}(\boldsymbol{\pi}_{s_{t-1}}), \quad (s_0 = 1) \\ y_t &\sim F(\boldsymbol{\phi}_{s_t})\end{aligned}$$



Teh, Jordan, Beal and Blei (2005) derived iHMMs in terms of Hierarchical Dirichlet Processes.

1 - Research Proposition

Inference and Learning: Gibbs Sampling

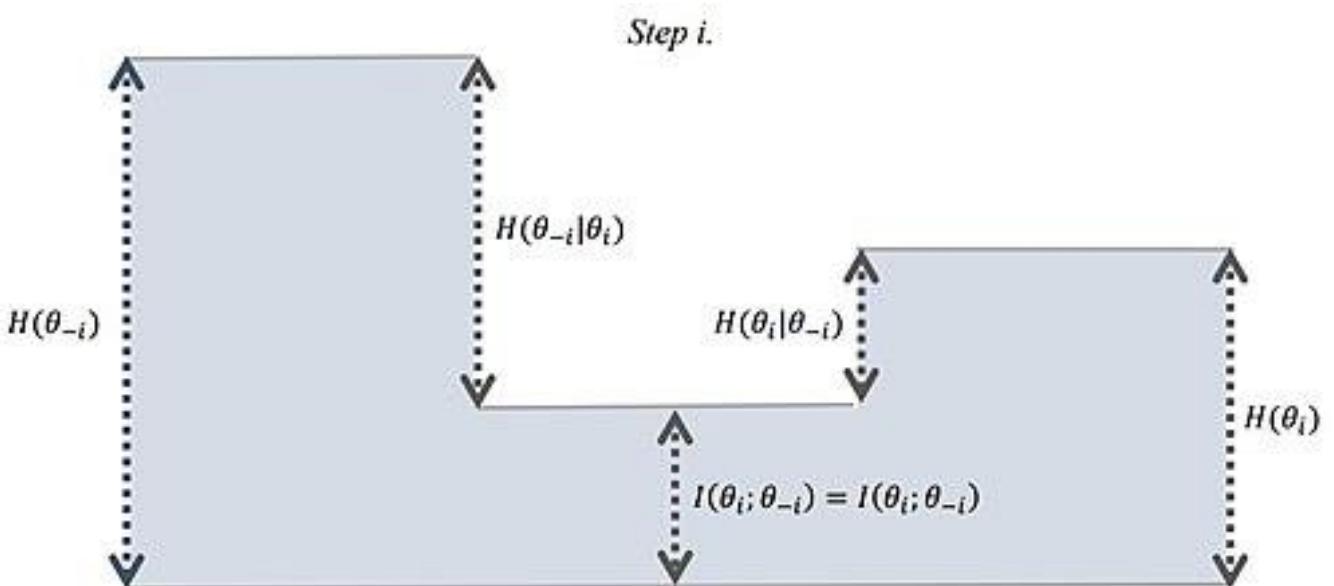
initialize Y^0, X^0

for $j = 1, 2, 3, \dots$ **do**

sample $X^j \sim p(X|Y^{j-1})$

sample $Y^j \sim p(Y|X^j)$

end for



1 - Research Proposition

Inference and Learning: Gibbs Sampling

Gibbs sampling the posterior of neural networks

Giovanni Piccioli^{2,1} , Emanuele Troiani¹ and Lenka Zdeborová¹

Published 11 March 2024 • © 2024 The Author(s). Published by IOP Publishing Ltd

[Journal of Physics A: Mathematical and Theoretical, Volume 57, Number 12](#)

[Bayesian Statistics for Complex Systems](#)

Citation Giovanni Piccioli *et al* 2024 *J. Phys. A: Math. Theor.* **57** 125002

DOI 10.1088/1751-8121/ad2c26

Abstract

In this paper, we study sampling from a posterior derived from a neural network. We propose a new probabilistic model consisting of adding noise at every pre- and post-activation in the network, arguing that the resulting posterior can be sampled using an efficient Gibbs sampler. For small models, the Gibbs sampler attains similar performances as the state-of-the-art Markov chain Monte Carlo methods, such as the Hamiltonian Monte Carlo or the Metropolis adjusted Langevin algorithm, both on real and synthetic data. By framing our analysis in the teacher-student setting, we introduce a thermalization criterion that allows us to detect when an algorithm, when run on data with synthetic labels, fails to sample from the posterior. The criterion is based on the fact that in the teacher-student setting we can initialize an algorithm directly at equilibrium.

Keywords: MCMC, Bayesian learning, neural networks, sampling algorithms, MCMC thermalization, statistical physics

2 - Use Case

Visual Lab

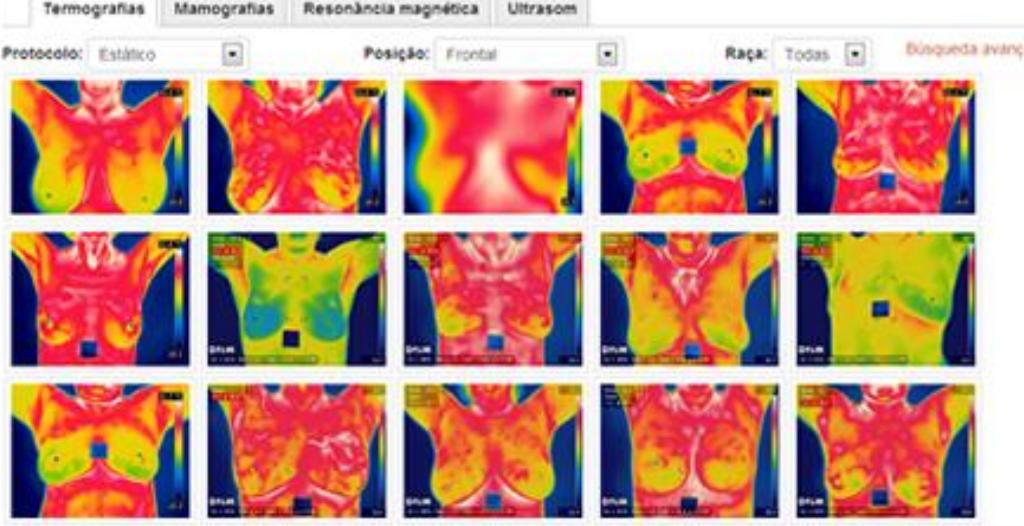
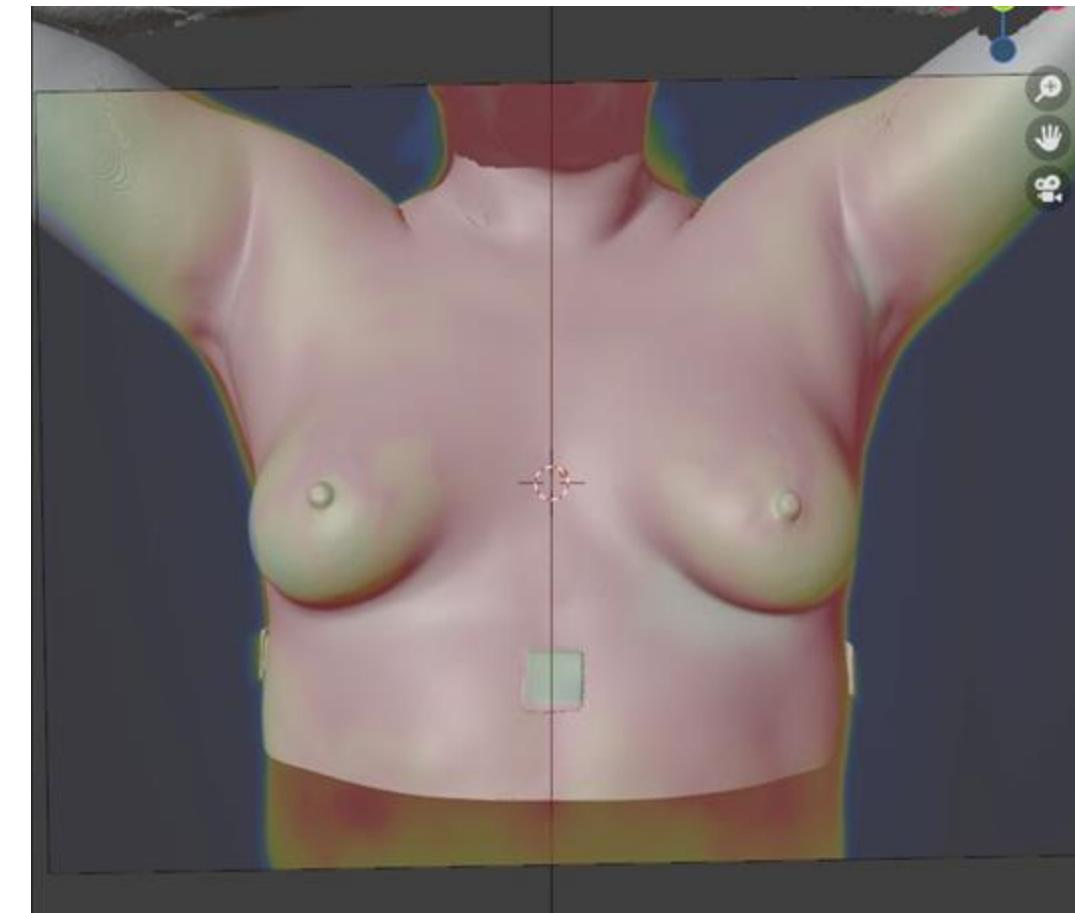
Escrita o termo de busca Admin -

Inicial Pacientes Imagens Criar prontuario Explorar Banco Estatísticas Configurações

Termografias Mamografias Resonância magnética Ultrasom

Protocolo: Estático Posição: Frontal Raça: Todas

Busca avançada



Thank you!