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Introduction

> 3D reconstruction is one of the most popular research areas in
computer vision

1) NeRF introduced the neural network to generate 3D renders.

1) pixelNeRF uses only a few images as input, and a CNN-based
Encoder on top of NeRF to generate better 3D renders.

1) 3D Gaussian Splatting uses 3D Gaussian and gradient descent to
generate better 3D renders than priors.

1) pixelSplat combines 3D Gaussian splatting with a
reparameterization trick and a neural network

> Input two images of an object from two different viewpoints and
generates a 3D render within minimal inference time. It is like a
combination of 3D Gaussian Splatting and NeRF.
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- A feed-forward model
that learns to
reconstruct 3D
radiance fields
parameterized by 3D
Gaussian primitives
from pairs of images.

- This results in an explicit 3D representation
that is renderable in real time, remains
editable, and is cheap to train.



Model’s Evolution

Differentiable Rendering

because requires evaluating dozens or hundreds of points along each

training, reconstruction, and renderlng are memory- and time-intensive camera ray

Light Field Transformers

where aray is rendered by embedding itintoa  do not reconstruct 3D scene representations that
guery token and a color is obtained via cross- can be edited or exported for downstream tasks
attention over image tokens. in vision and graphics

faster than volume rendering, although far from
real-time

Rasterization-based Volume Rendering

Fast and memory efficient Real-time

pixelSplat

benefits of a primitive-based 3D representation:

fast and memory efficient rendering as well as interpretable 3D structure to generalizable view synthesis



Architecture Diagram

Overall Architecture
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Two-View Image Encoding

. PixelSplat begins by processing a pair of input images through a
feature extraction network, which generates a high-dimensional
representation of each image. This neural network, often
structured similarly to those used in NeRF architectures, extracts
crucial visual and spatial features from the images, setting the
stage for understanding the scene’s geometry.



Epipolar Geometry and Scale Ambiguity Resolution

. The extracted features are then processed using an epipolar
transformer, a component that leverages the geometric
relationship between the two views to resolve scale ambiguity—
an inherent challenge in reconstructing 3D scenes from 2D
Images. This step ensures that the 3D positions inferred from
different images are consistent relative to each other, addressing
variations in camera positioning and orientation.

Real-world (Metric) Scale ———

Arbitrary SfM Scale \
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Probabilistic Sampling of Gaussian Parameters

. With scale and geometry calibrated, the next step involves a
novel application of 3D Gaussian splatting, where the model
predicts a dense probability distribution for the potential locations
of Gaussian primitives. This approach is facilitated by the
reparameterization trick, which allows the network to sample
these locations differently. Here, each Gaussian’s position
(mean), shape (covariance), and visibility (opacity) are
determined, enabling gradients to be propagated back through
the network during training, thus optimizing the Gaussian

placement efficiently.



Two-View Image Encoding

. Rendering and Output Generation: Finally, the parameterized 3D
scene, now represented as a collection of Gaussian splats, Is
rendered to produce novel views. This rendering process IS
optimized for speed and memory efficiency, making use of the
Gaussian splatting technique’s light computational footprint. The
output is a set of new images, or novel views, generated from
perspectives not originally captured by the Iinput images,
showcasing the model’s ability to interpolate and extrapolate 3D
space from limited data.
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Proposed probabilistic prediction of pixel-aligned Gaussians
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Probabilistic prediction of pixel-aligned Gaussians

Algorithm 1 Probabilistic Prediction of a Pixel-Aligned Gaussian.

Require: Depth buckets b € R, feature F[u] at pixel coordinate u, camera origin of reference view o, ray direction d,,.
. (¢,6,%,S) = f(F[u]) b predict depth probabilities ¢ and offsets d, covariance X, spherical harmonics coefficients S

—

2z~ DPg(2) > Sample depth bucket index z from discrete probability distribution parameterized by ¢
3 u=o0+ (b, +4,)d, > Compute Gaussian mean g by unprojecting with depth b, adjusted by bucket offset 4§,
4 a=0q, > Set Gaussian opacity « according to probability of sampled depth (Sec. 4.2).
5: return (p, X, o, S)
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Quantitative Comparison

ACID RealEstate 10k Inference Time (s) Memory (GB)
PSNRT SSIMT LPIPS] | PSNRT SSIMT LPIPS] | Encode| Render| | Training| Inference |
Ours 28.27 0.843 0.146 26.09 0.863 0.136 0.102 0.002 14.4 3.002
Duetal. [10] 26.88 0.799 0.218 24.78 0.820 0.213 0.016 1.309 314.3 19.604
GPNR [46] 25.28 0.764 0.332 24.11 0.793 0.255 N/A 13.340 3789.9 19.441
pixelNeRF [58] 20.97 0.547 0.533 20.43 0.589 0.550 0.005 5.294 436.7 3.962
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Qualitative Comparison

Ref. Target View Ours

Duetal. [10]

GPNR [46]

pixelNeRF [58]
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Ablation
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Attention Visualization
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Limitations

» Rather than fusing or de-duplicating Gaussians observed from both
reference views, it simply outputs the union of the Gaussians

predicted from each view.

> It does not address generative modelling of unseen parts of the
scene.

> When extended to many reference views, their epipolar attention
mechanism becomes prohibitively expensive in terms of memory.
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Additional Results

Ours (3 Views)

Ours

rget View

Ta

Ref.
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Conclusions

> It is an original approach to the problem of with only two inPu_t
Images taken from different points of view, synthetize novel views.

> it uses a pipeline of pre-image encoder, followed by epipolar
sampling, epipolar attention and gaussian prediction.

> They claim that their work at inference time is significantly faster
than prior work on generalizable novel view synthesis while
producing an explicit 3D scene representation.

> They claim that to solve the problem of local minima that arises in
primitive-based function regression, they introduced a novel
parameterization of primitive location via a dense probability
distribution and introduced a novel reparameterization trick to
backpropagate gradients into the parameters of this distribution.
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Conclusions

> They claim that their framework is general, and they hope that their
work inspires follow-up work on prior-based inference of primitive-
based representations across applications.

> They suggest for future to leverage their model for generative
modelling by combining it with diffusion models or to remove the
need for camera poses to enable large-scale training.

> Their model resolve scale ambiguity.

> Strongly accept.
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Um pouco sobre os autores

Vincent Sitzmann David Charatan Sizhe Li Andrea Tagliasacchi



Vincent Sitzmann

Professor assistente atuando no MIT EECS e liderando o
Scene Representation Group.

Fez seu doutorado em Stanford e pds-doutorado em MIT
CSAIL.

Possui 3 papers aceitos no CVPR e 10 aceitos no NeurlPS.
Também é um dos autores do paper Flowmap.




David Charatan Sizhe LI

Aluno de doutorado Aluno de doutorado

no MIT EECS. no MIT CSAIL.
Um dos autores do FlowMap. 1 paper 1 paper aceito no CVPR (PixelSplat) e 2
aceito no CVPR (PixelSplat), 1 paper aceitos no ICLR.

aceito no SIGGRAPH e 1 paper aceito
no 3DV.



Andrea Tagliasacchl

Atua como professor auxiliar na universidade Simon Fraser,
cientista pesquisador do Google DeepMind e professor

auxiliar no departamento de ciéncia da computacao da
universidade de Toronto.

@  Dentre seus mentores, esta Geoffrey Hinton, ganhador do
~ Nobel da fisica deste ano junto com John Hopfield.

S Andrea possui 28 papers aceitos no CVPR, 5 papers aceitos
= | na ECCV e 7 papers aceitos na NeurlPS.

Tendo ganhado o SGP best paper award de 2015, o CVPR best student paper award
de 2020, e 0 CVPR best paper award de 2024.



Contexto

Que problema exatamente eles estavam tentando resolver?



Prior-based 3D Reconstruction and View Synthesis

Reconstrucdes 3D de qualidade de uma cena proxima da camera usando poucas
Imagens ja estavam sendo feitas.

Reconstrucoes 3D de boa qualidade nao limitadas pela distancia da cena e a
camera eram dificeis de serem feitas com poucas imagens.

Single-View View Synthesis with Multiplane Images

Richard Tucker Noah Snavely
Google Research

Pushing the Boundaries of View Extrapolation with Multiplane Images

Pratul P. Srinivasan’ Richard Tucker? Jonathan T. Barron?
Ravi Ramamoorthi® Ren Ng' Noah Snavely?
'UC Berkeley, *Google Research, *UC San Diego



Prior-based 3D Reconstruction and View Synthesis

Preservar a localidade end-to-end e a equivariancia de deslocamento entre o
encoder e a representacao de cena por meio de pixel-aligned features e
transformers, possibilitou a generalizacao de cenas ilimitadas.

IBRNet: Learning Multi-View Image-Based Rendering

2 Zhicheng Wang' Kyle Genova'® Pratul Srinivasan’ Howard Zhou'

Qiangian Wang":
L2 Thomas Funkhouser':

Jonathan T. Barron' Ricardo Martin-Brualla' Noah Snavely

!Google Research  ?Cornell Tech, Cornell University “Princeton University

pixelNeRF: Neural Radiance Fields from One or Few Images

Alex Yu Vickie Ye Matthew Tancik Angjoo Kanazawa
UC Berkeley



Prior-based 3D Reconstruction and View Synthesis

Cost volume Light field scene representation
MVSNeRF Scene Representation Transformer
Stereo Radiance Fields Light Field Networks

GeoNeRF Light Field Neural Rendering



Digging Into Self-Supervised Monocular Depth Estimation

Clément Godard Qisin Mac Aodha®  Michael Firman®  Gabriel Brostow”

'UCL “Caltech 'Niantic

2019 CVPR

Monocular depth estimation

Scale ambiguity in
machine learning for
multi-view geometry

Towards Robust Monocular Depth Estimation:
Mixing Datasets for

Zero-shot Cross-dataset Transfer

René Ranfil*, Katrin Lasinger®, David Halner, Konrad Schindler, and Viadien Koltun

2020

l

Scale-invariant depth losses

Depth Map Prediction from a Single Image
using a Multi-Scale Deep Network

David Eigen Christian Puhrsch

Roh Fergus

2014 NeurlPS

Vision Transformers for Dense Prediction

René Ranftl Vladlen Koltun

Alexey Bochkovskiy

Intel Labs

2021



Scale ambiguity in
- : . -
Vincent! machine learning for
multi-view geometry

Diffusion with Forward Models: Solving Stochastic

Inverse Problems Without Direct Supervision Generative Novel View Synthesis with 3D-Aware Diffusion Models

Avush 1 i Ti i Yin' G ¢ te' S Rezchikov? Eric R. Chan *"'~, Koki Nagano®'*, Matthew A. Chan*", Alexander W. Bergman*', Jeong Joon Park*',
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Joshina R, Tenenbaim Fredo Duarand William T. Freciman Vincend Sitzmann Axel VY Miika Aittala”, Shalini De Mello®, Tero Karras®, and Gordon Wetzstein

Stanford University NVIDIA

MIT C5AI MIT BCS MIT CBMM  “Prninceton [AS

2023 NeurlPS v 2023 3DV

[ Novel view synthesis ]

Redimensione cenas 3D
de acordo com

heuristicas em 2023

estatisticas de
profundidade e ATYC i ¢ AL N7 s

_. ZeroNVS: Zero-Shot 360-Degree View Synthesis from a Single Image
condicione seus encoders i - i i

na escala da cena.
- - Kyle Sargent', Zizhang Li', Tanmay Shah®, Charles Herrmann®, Hong-Xing Yu',

Yunzhi Zhang', Eric Ryan Chan', Dmitry Lagun®, Li Fei-Fei', Deging Sun®, Jiajun Wu'

'Stanford University, *Google Research




Scale ambiguity in
machine learning for
multi-view geometry

Epipolar Transformers

PixelSplat

Yihui He* Rui Yan® Katerina Fragkiadaki Shoou-I Yu
Carnegie Mellon University Facebook Reality Labs
Pittsburgh, PA 15213 Pittsburgh, PA 15213

2020 CVPR

Construimos um multi-
view encoder que pode
inferir a escala da cena
usando um
transformador epipolar.



Artigos subsequentes

LGM: Large Multi-View Gaussian Model for

High-Resolution 3D Content Creation
ECCV 2024 (Oral)

Jiaxiang Tang', Zhaoxi Chen?, Xiaokang Chen!, Tengfei Wang?, Gang
Zeng', Ziwei Liu?

1 Peking University 2 S-Lab, Nanyang Technological University 3

Shanghai Al Lab

GS-LRM: LARGE RECONSTRUCTION
MOoDEL FOR 3D (GAUSSIAN SPLATTING

Kai Zhang' 1, Sai Bi |, Hao Tan 1, Yuanbo Xiangli4, Nanxuan Zhao',
Kalyan Sunkavalli’, Zexiang Xu'
*(Equal contribution)
lAdobe Research “Cornell University



Outros papers que tratam do mesmo Esses dois papers ainda possuem o

problema, reconstrucao de cenas 3D ponto forte de resolverem esse problema
com poucas imagens. sem a necessidade da posicao das
cameras.

No Pose, No Problem: Surprisingly Simple 3D

Gaussian Splats from Sparse Unposed Images
ICLR 2025 Conference Submission3116 Authors

DUSt3R: Geometric 3D Vision Made Easy

Shuzhe Wang, Vincent Leroy, Yohann Cabon, Boris Chidlovskii, Jérome Revaud

The IEEE / CVF Computer Vision and Pattern Recognition Conference (CVPR), Seattle, USA,
17-21 June, 2024
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General code

on the image:

©)
@)

left: method architecture
right: .py files of that method

IMAGE 1

IMAGE 2

Per-image Enconder

backbone_dino
backbone_resnet

Epipolar Sampler

epipolar_sampler

Epipolar Attention

epipolar_transformer
image_self_attention
transformer

Gaussian Prediction

encoder_epipolar




Image Features

0 o Deg
0 o
o< [ o
) @ -
. : Cal
s % |s '
- " 1
8 &
2 2 — Bind
. @ o
Convolution Max pooling o o —  Fish
) ':l
| | | _] ~ Fox
{onyodulionad Layers + Pooling layers Fully conmected kavers

Design of Convolution Meural Network

IMAGE 1

[

IMAGE 2

Per-image Enconder

h J

Epipolar Sampling

¥

Epipolar Attention

¥

Gaussian Prediction




Image Features

neDino(Ba
__init 1591

forward(
self,
context: W 3
Float[Tenso batch view d out height width"]:

resnet_features = self.resnet backbone(context)

s ¥V, _, h, w= context["image"].shape
assert h ¥ self.patch size == @ .

tokens = rearrange{context["image"], >
tokens = self.dino.get intermediate ldjEPw{TuPEHE}[ﬁ]
global token = self_global token_mlp{tokens[:, 8])
local tokens = self.local token mlp(tokens[:, 1:])

global token = repeat(global token, "(b v) ¢
h=h, w=w)

local tokens = repeat|

return resnet features + local tokens + global token

IMAGE 1

IMAGE 2

Per-image Enconder

h

Epipolar Sampling

¥

Epipolar Attention

¥

Gaussian Prediction




Epipolar Samples from rays

L Elatatet V2
r

'S S N

fused features

(HxW=256) m
v /{3

ﬁ similarity

B o=k

matches
(HxW=x256)

deep features
(HxWx256)

Reference view Source view

- source paper: Epipolar Transformer

candidates
(256xK)

deep features

(H<W=x256)
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Epipolar Samples from rays

num_sampl
index v: Inc
transpose v: Index

tr‘.‘mf.;t)o‘.-‘:« v: Index
init  (

forward(
self,

Float
Float

Float

Float

device = imag device

images.shape

xy_ray, origins, directions self.generate_image rays(
images, extrinsics

intrinsics

projection proj
rearrange
e(directions,
»(self.collect(extrinsi
rearrange(self.collect(intrinsics
rearrange(near,

rearrange(far,

IMAGE 1

IMAGE 2

h 4

Per-image Enconder

¥

Epipolar Sampling

v

Epipolar Attention

L 4

Gaussian Prediction




Epipolar Samples ...

s = self.num_samples

sample_

epth = (torch.arange(s, device=device

sample depth = rearrange(sample depth,

xy_min =

Xy _min =

Xy _min

max

projection| “].nan_to_num(posinf=0, neginf=0)
xy_min * projection["overla 3 oo ]
rearrange(xy _min, ” roxy -> f xy")

projection[“xy max"].nan_to_num(posinf=0, neginf=0)

Xy max * projection| erl: | B |

rearrange(xy max,

xy _sample = xy min + sample depth * (xy _max - Xy min)

samples = self.transpose(xy sample)

samples = F.grid_sample(

rearrange(images,

rearrange(2

m

* samples - 1,

padding modes=

align _corners=

)

samples = rearrange(

samples,

S=S

\
)

samples = self.transpose(samples)

samples = samples * projection[”

half_span = 0.5

IMAGE 1

IMAGE 2

h 4

Per-image Enconder

¥

Epipolar Sampling

v

Epipolar Attention

L 4

Gaussian Prediction




The transformer

° forward method inputs:

o self, features, extrinsics, intrinsics, near, far

)} + features

e foreach inputimage F and the other is called ~F

s = Fliy] ® 7(dg,)
q=Q- -F[u], ki =K:-s,

V{=V-S.

IMAGE 1

IMAGE 2

Per-image Enconder

v

Epipolar Sampling

Epipolar Attention

¥

Gaussian Prediction




The transformer

’{{}‘_I HaWx256

1x1, BN

H= W =256

HxWrx 256K

Epipolar
sampler
H=W =256 HxW %256
Reference view SOuUrce view

- source paper: Epipolar Transformer
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Attention

forward(self, x, z= ):

qkv = self.to _gkv(x).chunk(3, dim=-1)

q self.to q(x)
k, v = self.to_kv(z).chunk(2, dim=-1)
gkv = (q, k, v)

q, k, v = ma| t: rearrange(t,
heads), gkv)

dots torch.matmul(q, k.transpose(-1, -2)) * self.scale

attn = self.attend(dots)

out = torch.matmul(attn, v)
out = rearrange(out,
1 self.to out(out)
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Per-image Enconder

v

Epipolar Sampling

Epipolar Attention

¥

Gaussian Prediction




Generating Gaussians

o, P, (za) | ..

T —
(=0 III

oy, Pa, (21)

. Pe.(zc) -
fiacaaaiid

L. sample 2 ~ pg(z) ————

(Ba,Sa) | #a=Nza) ' Ga = B4, (a)
(En.5u) Hy = .FJ{:!:]" ap = pg, ()
(E.8.) | #e=hlz) ac = Py, ()

I:_;..!_“. E;.. gy, S-il]
(pty,. .o, Si)
[T R |

|
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IMAGE 2

Per-image Enconder

v
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Generating Gaussians

init_ (self, cfg:

map_pdf_to_opacity(

forward(

features
features
feat 3 3 . xbo ! ction(features)

features rearrange(features,

cfg.use epipolar transformer:

skip = arrange ( > ) <
skip self.high resolut skip(skip)

features + rearr:é

IMAGE 1

IMAGE 2

k4

Per-image Enconder

v

Epipolar Sampling

v

Epipolar Attention

v

Gaussian Prediction




Generating Gaussians

features = rearrange(features, v
depths, densities self.depth _predictor.forward(

features,

context

context r ],

deterministic,

1 if deterministic else self.cfg.gaussians per pixel,

Xy _ray, _ = sample_image grid((h, w), device)
Xy_ray = rearrange(xy_ray,
gaussians = rearrange(
self.to_gaussians(features
b ' »
srf=self.cfg.num_surfaces,
)
offset_xy = gaussians[..., :2].sigmoid()
pixel size = 1 / torch.tensor((w, h), dtype=torch.float32,
device=device)
Xy ray = xy ray + (offset xy - 0.5) * pixel size
gpp = self.cfg.gaussians_per pixel
gaussians = self.gaussian adapter.forward(
rearrange(context xtrinsics™ |, ”
rearrange(context trirs >
rearrange(xy_ray,
depths,
self.map_pdf_to_opacity(densities, global_step) / gpp,

rearrange(gaussians|..., 2:1,

IMAGE 1

IMAGE 2

k4

Per-image Enconder
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v
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Some sayings

e extrinsics, Intrinsics, far, near, and other factors
are user parameters

« github only explains training, evaluation and some tests
- It does not state how to run on 2 images
o It also does not show how to export .ply files



Running the code once




MV Splat vs PixelSplat
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1 - Research Proposition

¢, | Pe, (2a) o
v @y, “Pdu. (zb) Cg P
F arTn | " - ,
/ . P, (zc) - S

L—— sample z ~ pg(2) ————

I~

¥.,S. Po = h(za) aa = pg, (2a)
F[a]!‘j‘ F[C] ( }: ’ - ” (lu'm Eu!ﬂm Sn)
I:I (Zb,8p) | Ko = h(2) ' ap = Py, (zhz (&h*g" 3“ g('_*))
.S, p. = h(z) a. = pg,_(2c)
.5) o) |

Algorithm 1 Probabilistic Prediction of a Pixel-Aligned Gaussian.

Require: Depth buckets b € RZ, feature F|u] at pixel coordinate u, camera origin of reference view o, ray direction d,,.
1: (¢,6,%,S) = f(F[u]) v predict depth probabilities ¢ and offsets 8, covariance X, spherical harmonics coefficients S

20z~ pelz) > Sample depth bucket index z from discrete probability distribution parameterized by ¢
3 p=o0+(b.+4.)d, > Compute Gaussian mean g by unprojecting with depth b. adjusted by bucket offset 8.
4 o= ¢. > Set Gaussian opacity a according to probability of sampled depth (Sec. 4.2).
5: return (p, X, o, S) 52




1 - Research Proposition

Hidden Markov Models

S o

53



1 - Research Proposition

= Generative Model for iHMM

OO

Teh, Jordan, Beal and Blei (2005) derived iHMMs in
terms of Hierarchical Dirichlet Processes.
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1 - Research Proposition

Inference and Learning: Gibbs Sampling

initialize Yoj xY Stepi

forj=1,2,3,...do :

: H(6_:16;)

7 J—1 : : A A
sample X~ ~ p(X[Y~ ") - H(O,10-0) :
j j vV m
sample Y’ ~ p(Y|X/) ; s
: ; 1(6;;6-) = 1(6;;0_;) :
end for v = \ 4 v
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1 - Research Proposition

Inference and Learning: Gibbs Sampling

Gibbs sampling the posterior of neural networks

Giovanni Piccioli®' £2), Emanuele Troiani' and Lenka Zdeborova'

Published 11 March 2024 « © 2024 The Author(s). Published by IOP Publishing Ltd

Journal of Physics A; Mathematical and Theoretical, Volume 57, Number 12

______ A L ime

Bayesian Statistics for Complex Systems
Citation Giovanni Piccioli et al 2024 J. Phys. A: Math. Theor. 57 125002
DOI 10.1088/1751-8121/ad2c26

Abstract

In this paper, we study sampling from a posterior derived from a neural net-
work. We propose a new probabilistic model consisting of adding noise at
every pre- and post-activation in the network, arguing that the resulting pos-
terior can be sampled using an efficient Gibbs sampler. For small models, the
Gibbs sampler attains similar performances as the state-of-the-art Markov chain
Monte Carlo methods, such as the Hamiltonian Monte Carlo or the Metropolis
adjusted Langevin algorithm, both on real and synthetic data. By framing our
analysis in the teacher-student setting, we introduce a thermalization criterion
that allows us to detect when an algorithm, when run on data with synthetic
labels, fails to sample from the posterior. The criterion is based on the fact
that in the teacher-student setting we can initialize an algorithm directly at
equilibrium.

Keywords: MCMC, Bayesian learning, neural networks,
sampling algorithms, MCMC thermalization, statistical physics
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2 - Use Case
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Thank youl!
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