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Summary

. Summary:
e Multiview transformer Y

o transformer = Swin transformer

K 1 1

Explain the key ideas,
contributions, and
their significance.

Transformer correlation N N self- I
softmax attention
feature extraction feature enhancement feature matching flow propagation

sourcer: gmflow



Summary

e Cost computation: The cost volume expresses
how well a pixel i in image | matches the same pixel
in the second image | shifted by vector I.

H, H

Figure 1: Illustration of the space-sweep method. Fea-
tures from each image are backprojected onto successive
positions Z — z; of a plane sweeping through space.

source: A Space-Sweep Approach to Multi-lmage Matching
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Explain the key ideas,
contributions, and
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e Refinement

Summary
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source: diffusion networks

Summary:

Explain the key ideas,
contributions, and
their significance.
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Summary

S A
e Depth estimation ummary

o refining is done with u-net as well , ,
Explain the key ideas,
contributions, and

their significance.

Depth estimation. We use the softmax operation to obtain per-view depth
predictions. Specifically, we first normalize the refined cost volume C" in the
depth dimension and then perform a weighted average of all depth candidates

G = [dl,dz,'” ,dD] ERDZ

Vi = softmax(C?)G € RF*XW (6)



Summary

. . Summary:
e (Gaussian generation

Explain the key ideas,

contributions, and
their significance.

Point Cloud



https://www.researchgate.net/figure/Point-cloud-generation-from-the-depth-map-Top-image-input-to-the-pipeline-rectified_fig1_368263168

Strenghts

10x fewer parameters

2x faster

better outputs than pixelsplat

less pos-processing than pixelsplat
better gneralization for N images

Strengths:

What about the paper
provides value? --
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Strenghts

Strengths:

_ What about the paper
Table 1: SOTA results provides value? --

Time Param RealEstatelOK [54] ACID [21]
(s) (M) PSNRft SSIMt LPIPS], PSNRt SSIMT LPIPS|
pixelNeRF [49] 5.299 28.2 20.43 0.589  0.550 2097 0.547 0.533

Method

GPNR |[35] 13.340 9.6 24.11 0.793 0.255 25.28 0.764 0.332
AttnRend [10] 1.325 125.1 24.78 0.820 0.213 26.88 0.799 0.218
MuRF [44] 0.186 5.3 26.10 0.858 0.143 28.09 0.841 0.155

pixelSplat [1] 0.104 125.4 25.89 0.858 0.142 28.14 0.839 0.150
MVSplat 0.044 120 26.39 0.869 0.128 28.25 0.843 0.144

1



Strenghts

Strengths:

What about the paper
Table 2: Better generalization provides value? --

ACID [21] DTU [17]

Training dat Method
s B PSNR1 SSIM{T LPIPS] PSNR1 SSIM{ LPIPS]

_pixelSplat [1] 27.64 0.830 0160 12.89 0.382 0.560
RealEstatelOK [54] © y\rysplat 28.15 0.841 0.147 13.94 0.473 0.385
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Weaknesses

Weaknesses:
e Need camera poses

e Non-lambertian surfaces (mirrors and glasses) WS datr et

contributions?

Input MVSplat Ground Truth Error Map
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Foundations

NeRF/Gaussian Splatting

Depth estimation

Multi-View Stereo (as features)

o Gmflow (1/2)

o Swin transformer

Cost volume

o Space-Sweep, Unifying Flow, Mvsnet

(Cost volume, depth) Refinement (2d u-net)/(diffusion)
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Foundations: Math

Inverse depth domain

Warping cnn features

From depth to 3d point clouds

From depth softmax to Opacity

Conv applied to image feature + cost volume + original
images returns Covariance and Color

Loss: LPIPS
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Derivative works

Nerfs

e [rackNeRF (noisy sparse)

Splats

HumanSplat

V3D (diffusion) (qit)
Flash3D
NoPoSplat
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Splats
DNGaussian
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Other methods
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e Spanndr

e PR-LRM
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MVSplat vs PixelSplat
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MVSplat vs PixelSplat




MVSplat vs GS-LRM
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MVSplat vs NoPoSplat
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MVSplat vs NoPoSplat

o v
Ours (pose-free) ' MVSplat (pose-required) ' pixelSplat (pose-required)
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Problem: MV5Splat might be less effective on
non-Lambertian and reflective surfaces
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Fig. B: Failure cases. Our MVSplat might be less effective on the non-Lambertian
and reflective surfaces.

MVSplat Ground Truth Error Map Input MVSplat Ground Truth Error Map

. e e
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Project: MV5Splat with Shading Functions
for Reflective Surfaces

e train the model with more diverse datasets
e combine with article GaussianShader: 3D Gaussian Splatting
with Shading Functions for Reflective Surfaces
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GaussianShader

- novel method that applies a simplified shading function on 3D
Gaussians to enhance the neural rendering in scenes with
reflective surfaces while preserving the training and rendering

efficiency

Cameras

Covariance . Opacity Position p
\.V
Shape Attributes Project and Rasterlze
Rendenng

" @ 0D . I
Diffuse Tint Roughness = Normal Residual
Shading Attributes Differentialble Envlight

3D Gaussian Spheres
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Research plan

e incorporate GaussianShader code into MVSplat
e train on various datasets:

a. NeRF Synthetic

b. reflective objects datasets: Shiny Blender and Glossy
Synthetic

c. real-world large-scale scenes: Tanks and Temples
d. datasets previously used

e compare results and, if necessary, adjust models
e check if MVSplat loses effectiveness significantly
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