

# Gaussian Opacity Fields

Leonardo Mendonça (Scientific peer reviewer)

Mateus Barbosa (Archaeologist)

Esteban Wirth (Hacker)

Diana Aldana (PhD Researcher)

Institute for Pure and Applied Mathematics (IMPA)



# Outline

- 1 Scientific peer reviewer
- 2 Archaeologist
- 3 Hacker
- 4 PhD Researcher

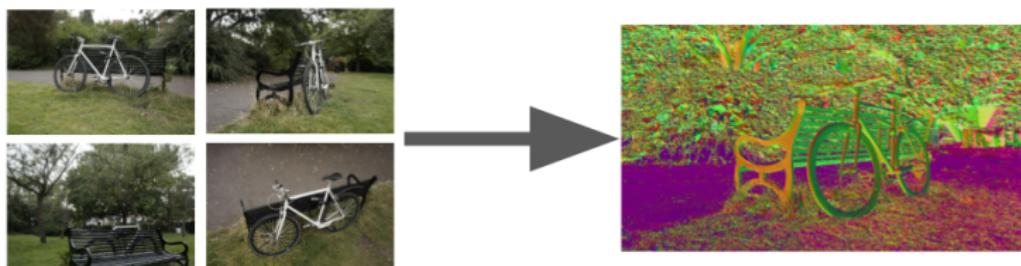
Scientific peer reviewer  
*Leonardo Mendonça*

# Introduction

- The paper proposes an improvement on the method of 3D Gaussian Splatting for surface reconstruction and novel-view synthesis;
- Its central contribution is the development of the *Opacity field*, derived from the same images used for training the model;
- Improvements are also made to the 3DGS training process;
- The contributions are modular, which allows for their incorporation in different Gaussian Splatting pipelines.

# Objectives

- Surface reconstruction from multiple views of a static scene;
- Creating a mesh that accurately describes the surface of the observed objects;
- Keeping a manageable mesh size and computing time compared to the state of the art;
- Extract accurate background meshes in unbounded scenes, a challenge which existing methods such as Neuralangelo [6] and 2DGS [3] still struggle with.



# Methodology: Gaussian Primitives

- Similar to 3DGS [4], GOF models the scene through a set of  $K$  3D Gaussian primitives  $\mathcal{G}_1, \dots, \mathcal{G}_K$ ;
- For a point  $\mathbf{x}$  in world space, a Gaussian  $\mathcal{G}_k$  is defined as follows:

$$\mathcal{G}_k(\mathbf{x}) = e^{-\frac{1}{2}(\mathbf{x}-\mathbf{p}_k)^T \cdot \Sigma_k^{-1} \cdot (\mathbf{x}-\mathbf{p}_k)} \quad (1)$$

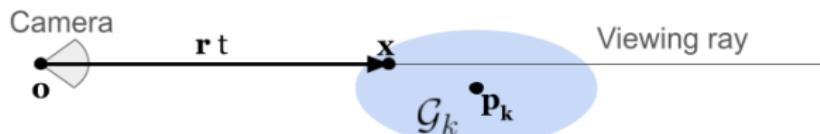
where  $\mathbf{p}_k$  is the Gaussian's center and  $\Sigma_k := \mathbf{R}_k \cdot \mathbf{S}_k \cdot \mathbf{S}_k^T \cdot \mathbf{R}_k^T$  is the variance matrix;

- $\mathcal{G}_k$  are evaluated on a set of rays departing from each camera position;
- Unlike 3DGS, in GOF the Gaussians are not "splatted" on screen space.

# Methodology: Ray-Splat Intersection

- GOF parameterizes a ray with origin at a point  $\mathbf{o}$  with unit direction  $\mathbf{r}$  as

$$\mathbf{x}(t) = \mathbf{o} + t \mathbf{r}; \quad (2)$$



- To find the ray-Gaussian intersection, GOF expresses the ray in the Gaussian  $\mathcal{G}_k$ 's coordinate system:

$$\mathbf{o}_g = \mathbf{S}_k^{-1} \cdot \mathbf{R}_k^T \cdot (\mathbf{o} - \mathbf{p}_k) \quad (3)$$

$$\mathbf{r}_g = \mathbf{S}_k^{-1} \cdot \mathbf{R}_k^T \cdot \mathbf{r} \quad (4)$$

$$\mathbf{x}_g = \mathbf{o}_g + t \mathbf{r}_g \quad (5)$$

- \* In the paper, the definitions of  $\mathbf{o}_g$  and  $\mathbf{r}_g$  have a minor mistake: the authors write  $\mathbf{R}_k$  instead of  $\mathbf{R}_k^T$ .

## Ray-Splat Intersection (cont.)

- It can be shown that the value of  $\mathcal{G}_k$  along the ray becomes a 1D Gaussian:

$$\mathcal{G}_k(\mathbf{o} + \mathbf{r}t) = \mathcal{G}_k^{1D}(t) = e^{-\frac{1}{2}(\mathbf{x}_g^T \cdot \mathbf{x}_g)} = e^{-\frac{1}{2}(\mathbf{r}_g^T \cdot \mathbf{r}_g t^2 + 2\mathbf{o}_g^T \cdot \mathbf{r}_g t + \mathbf{r}_g^T \cdot \mathbf{r}_g t^2)} \quad (6)$$

- (6) enables the computation of the depth  $t^*$  at which  $\mathcal{G}_k^{1D}$  is maximized:

$$\mathcal{E}(\mathcal{G}_k, \mathbf{o}, \mathbf{r}) = \sup_{t \in \mathbb{R}} \mathcal{G}_k^{1D}(t) = \mathcal{G}_k^{1D}(t^*) \quad (7)$$

$$t^* = -\frac{\mathbf{o}_g^T \cdot \mathbf{r}_g}{\mathbf{r}_g^T \cdot \mathbf{r}_g}. \quad (8)$$

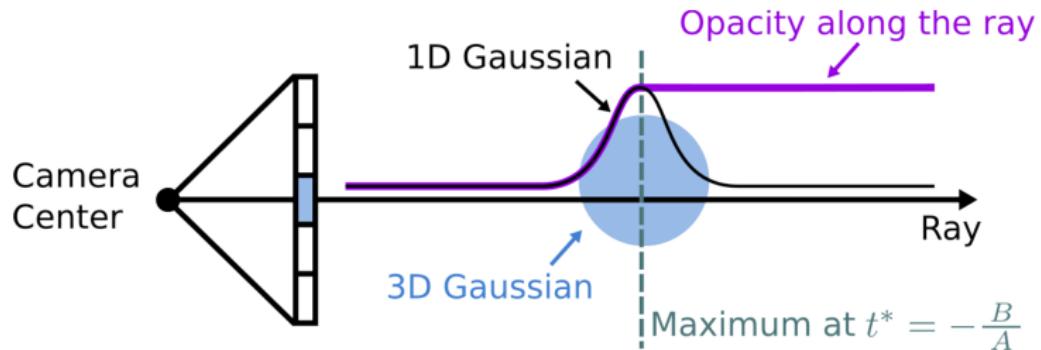
- As in 3DGS, a ray's color is calculated through alpha-blending:

$$\mathbf{c}(\mathbf{o}, \mathbf{r}) = \sum_{k=1}^K \mathbf{c}_k \alpha_k \mathcal{E}(\mathcal{G}_k, \mathbf{o}, \mathbf{r}) \prod_{j=1}^{k-1} (1 - \alpha_j \mathcal{E}(\mathcal{G}_j, \mathbf{o}, \mathbf{r})), \quad (9)$$

where  $\mathbf{c}_k$  is an RGB color parameterized with spherical harmonics, and  $\alpha_k \in [0, 1]$  is the weight, or opacity, of each Gaussian primitive;

- The  $K$  Gaussians are sorted using the depth.

# Opacity Field



- For each Gaussian and viewing ray, one can define the *opacity along the ray*:

$$O_k(\mathcal{G}_k, \mathbf{o}, \mathbf{r}, t) := \begin{cases} \mathcal{G}_k^{1D}(t) & , \text{if } t \leq t^* \\ \mathcal{G}_k^{1D}(t^*) & , \text{if } t > t^* \end{cases} \quad (10)$$

# Gaussian Opacity Field

- The definition extends to multiple Gaussians through alpha-blending:

$$O'(\mathbf{o}, \mathbf{r}, t) := \sum_{k=1}^K \alpha_k O_k(\mathcal{G}_k, \mathbf{o}, \mathbf{r}, t) \prod_{j=1}^{k-1} \left(1 - \alpha_j O_j(\mathcal{G}_j, \mathbf{o}, \mathbf{r}, t)\right); \quad (11)$$

- Finally, the *Gaussian Opacity Field*  $O : \mathbb{R}^3 \mapsto [0, 1]$  is defined as the minimum opacity of a point  $\mathbf{x}$  along all viewing rays:

$$O(\mathbf{x}) := \min_{(\mathbf{o}, \mathbf{r})} \left( \{O'(\mathbf{o}, \mathbf{r}, t) : \mathbf{x}(t) = \mathbf{o} + t \mathbf{r}\} \cup \{1\} \right); \quad (12)$$

- This field measures how visible a given point is in relation to the training camera views: a point of opacity 1 is understood to be on the interior an object or outside the bounds of the scene;
- \* The paper writes  $O(\mathbf{x}) := \min_{(\mathbf{o}, \mathbf{r})} O'(\mathbf{o}, \mathbf{r}, t)$ , which is not rigorous.

# Depth Distortion Regularization

- The Gaussian positions  $\mathbf{p}_k$ , rotations  $\mathbf{R}_k$ , scales  $\mathbf{S}_k$  and weights  $\alpha_k$  are optimized simultaneously through gradient descent;
- The paper adapts the depth distortion regularization from 2DGS [3] and Mip-NeRF [1]. For each Gaussian intersecting a ray  $(\mathbf{o}, \mathbf{r})$ , one defines:

$$\omega_i := \alpha_k \mathcal{E}(\mathcal{G}_i, \mathbf{o}, \mathbf{r}) \prod_{j=1}^{i-1} \left(1 - \alpha_j \mathcal{E}(\mathcal{G}_j, \mathbf{o}, \mathbf{r})\right), \quad (13)$$

where  $\mathcal{G}_i$  are the Gaussians sorted along the ray;

- Summing over every pair of Gaussians  $i, j$  along the ray results in the depth distortion loss:

$$\mathcal{L}_d := \sum_{i=1}^K \sum_{j=1}^K \omega_i \omega_j |t_i^* - t_j^*|; \quad (14)$$

- The gradient of (14) is only applied to  $t_i^*$ , which leads to grouping primitives closer together without affecting their  $\alpha$  values;
- \* The paper might benefit from a more clear definition of (14), as well as a thorough explanation of its benefits.

# Normal Consistency Regularization

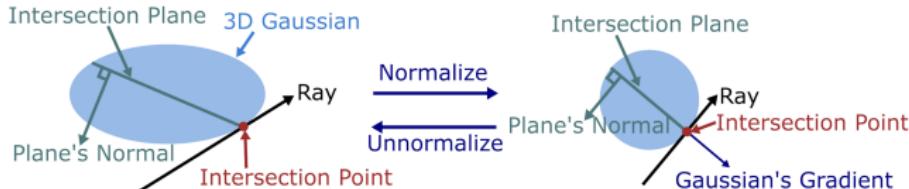
- 2DGS [3] introduced a successful approach for aligning planar Gaussians to the object's actual surface, in the form of an additional regularization term for each viewing ray:

$$\mathcal{L}_n := \sum_i \omega_i (1 - \mathbf{n}_i^T \cdot \mathbf{N}), \quad (15)$$

where  $\mathbf{n}_i$  is the normal of the  $i$ -th Gaussian along the ray and  $\mathbf{N}$  is the normal estimated from the depth map;

- To adapt it to GOF, one must define the normal vector of a 3D Gaussian for a given viewing ray;
- \* The definition used for the normal (next slide) is not sufficiently explained or justified in paper.

# Gaussian Normal Vector



- The text of the paper defines the normal as being  $\mathbf{n}_g = -\mathbf{r}_g$  in the Gaussian coordinate system. Then, to get the normal in world coordinates, one "reverses" normalization and scaling:  $\mathbf{n} = -\mathbf{R}_k^T \cdot \mathbf{S}_k^{-1} \cdot \mathbf{r}_g$ ;
- Following our corrected definition of  $\mathbf{r}_g$ , the normal direction becomes

$$\mathbf{n}_g = -\mathbf{R}_k^T \cdot \mathbf{S}_k^{-2} \cdot \mathbf{R}_k^T \cdot \mathbf{r}; \quad (16)$$

- \* Despite what is stated in the text, this is *not* equivalent to normalizing and denormalizing;
- \* The ablation section shows good quantitative results for this approach, but a better mathematical explanation is required.

# Final Loss Function

- The loss function for optimizing the Gaussian primitives is

$$\mathcal{L} := \mathcal{L}_c + \alpha \mathcal{L}_d + \beta \mathcal{L}_n; \quad (17)$$

- $\mathcal{L}_c$  is an RGB reconstruction loss modified by a decoupled appearance approach taken from Vastgaussian [7];
- $\alpha$  and  $\beta$  are hyperparameters given in 2DGS [3].

# Densification

- In 3DGS [4], Gaussian primitives are cloned or split when their view-space gradient reaches a certain threshold  $\tau$ ;
- This paper proposes replacing the gradient with a sum of norms of the individual pixel gradients:

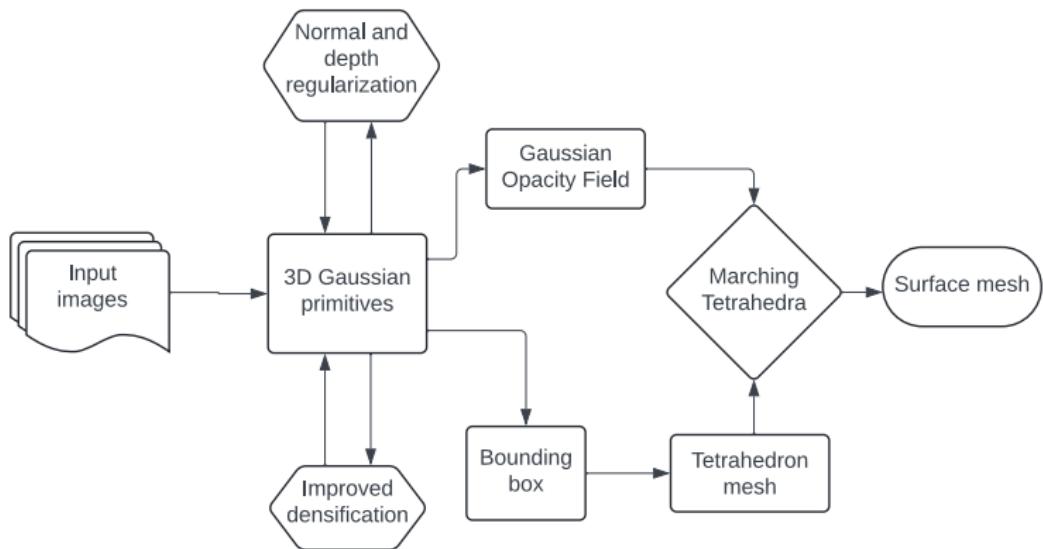
$$M := \sum_i \left\| \frac{dL}{d\mathbf{p}_i} \frac{d\mathbf{p}_i}{d\mathbf{x}} \right\|; \quad (18)$$

- This prevents the gradient from "cancelling out" between different views;
- The ablation shows this metric yields better results than the one used in 3DGS.

# Surface Extraction

- Finally, the objects' surface is defined as a level set of opacity:  $\{\mathbf{x}: O(\mathbf{x}) = 0.5\}$  ;
- Some points of interest are created on a bounding box of size  $3\sigma$  around each Gaussian;
- A sparse mesh of tetrahedrons is created through Delaunay triangulation from these points;
- A Marching Tetrahedra algorithm [5] modified with a binary search is then used to extract a triangular mesh corresponding to this surface ;
- Creating the tetrahedrons only in the Gaussian's bounding boxes limits the computation time and the complexity of the final triangular mesh.

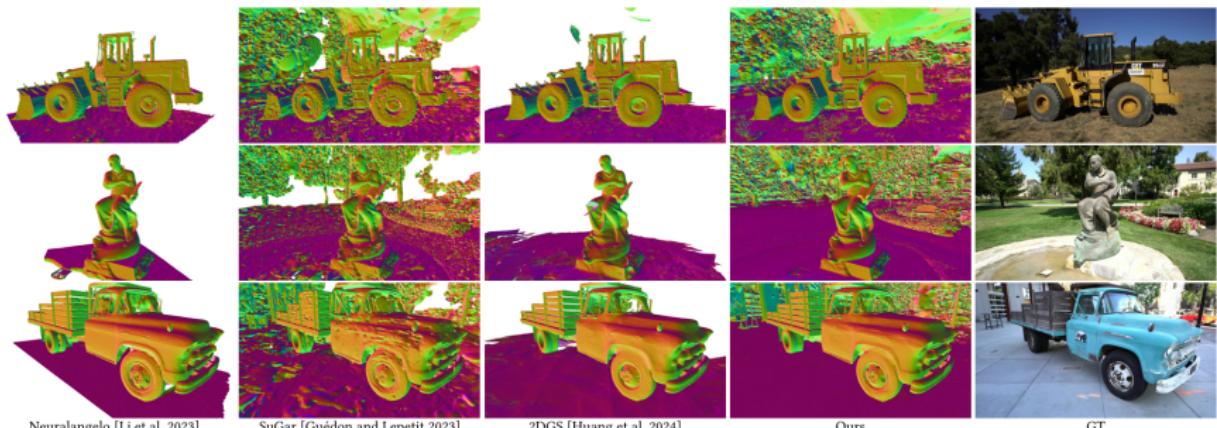
# Surface Reconstruction Pipeline



# Contributions

- The paper's main contributions to the state-of-the-art are:
  - ➊ Applying the depth distortion and normal consistency regularizations from 2DGS [3] to 3D Gaussian optimization;
  - ➋ Defining the *Gaussian Opacity Field* for delimiting the surface of an object or scene;
  - ➌ Proposing an efficient method for extracting a mesh from a 3D Gaussian cloud, by adapting the Marching Tetrahedra [5] algorithm.
- These contributions can be implemented together, as proposed in the paper, or separately, as part of a different Gaussian Splatting pipeline;
- As an example, the authors apply (2) and (3) to the output of Mip-Splatting in order to extract a surface mesh.

# Results: Surface Reconstruction



**Figure:** Normal maps from meshes generated for the *Tanks and Temples* dataset

# Results: Surface Reconstruction

|             | Implicit |          |              | Explicit |        |        |        |
|-------------|----------|----------|--------------|----------|--------|--------|--------|
|             | NeuS     | Geo-NeuS | Neuralangelo | SuGaR    | 3DGs   | 2DGs   | Ours   |
| Barn        | 0.29     | 0.33     | 0.70         | 0.14     | 0.13   | 0.41   | 0.51   |
| Caterpillar | 0.29     | 0.26     | 0.36         | 0.16     | 0.08   | 0.23   | 0.41   |
| Courthouse  | 0.17     | 0.12     | 0.28         | 0.08     | 0.09   | 0.16   | 0.28   |
| Ignatius    | 0.83     | 0.72     | 0.89         | 0.33     | 0.04   | 0.51   | 0.68   |
| Meetingroom | 0.24     | 0.20     | 0.32         | 0.15     | 0.01   | 0.17   | 0.28   |
| Truck       | 0.45     | 0.45     | 0.48         | 0.26     | 0.19   | 0.45   | 0.59   |
| Mean        | 0.38     | 0.35     | 0.50         | 0.19     | 0.09   | 0.32   | 0.46   |
| Time        | >24h     | >24h     | >24h         | >1h      | 14.3 m | 15.5 m | 24.2 m |

Figure: F1-score and computational time for surface reconstruction on the *Tanks and Temples* scenes (only foreground objects)

|          | 24                                | 37   | 40   | 55   | 63   | 65   | 69   | 83   | 97   | 105  | 106  | 110  | 114  | 118  | 122  | Mean | Time |        |
|----------|-----------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|--------|
| implicit | NeRF [Mildenhall et al. 2021]     | 1.90 | 1.60 | 1.85 | 0.58 | 2.28 | 1.27 | 1.47 | 1.67 | 2.05 | 1.07 | 0.88 | 2.53 | 1.06 | 1.15 | 0.96 | 1.49 | > 12h  |
|          | VolSDF [Yariv et al. 2021]        | 1.14 | 1.26 | 0.81 | 0.49 | 1.25 | 0.70 | 0.72 | 1.29 | 1.18 | 0.70 | 0.66 | 1.08 | 0.42 | 0.61 | 0.55 | 0.86 | >12h   |
|          | NeuS [Wang et al. 2021]           | 1.00 | 1.37 | 0.93 | 0.43 | 1.10 | 0.65 | 0.57 | 1.48 | 1.09 | 0.83 | 0.52 | 1.20 | 0.35 | 0.49 | 0.54 | 0.84 | >12h   |
|          | Neuralangelo [Li et al. 2023]     | 0.37 | 0.72 | 0.35 | 0.35 | 0.87 | 0.54 | 0.53 | 1.29 | 0.97 | 0.73 | 0.47 | 0.74 | 0.32 | 0.41 | 0.43 | 0.61 | > 12h  |
| explicit | 3DGs [Kerbl et al. 2023]          | 2.14 | 1.53 | 2.08 | 1.68 | 3.49 | 2.21 | 1.43 | 2.07 | 2.22 | 1.75 | 1.79 | 2.55 | 1.53 | 1.52 | 1.50 | 1.96 | 11.2 m |
|          | SuGaR [Guédon and Lepetit 2023]   | 1.47 | 1.33 | 1.13 | 0.61 | 2.25 | 1.71 | 1.15 | 1.63 | 1.62 | 1.07 | 0.79 | 2.45 | 0.98 | 0.88 | 0.79 | 1.33 | ~ 1h   |
|          | GaussianSurfels [Dai et al. 2024] | 0.66 | 0.93 | 0.54 | 0.41 | 1.06 | 1.14 | 0.85 | 1.29 | 1.53 | 0.79 | 0.82 | 1.58 | 0.45 | 0.66 | 0.53 | 0.88 | 6.7 m  |
|          | 2DGs [Huang et al. 2024]          | 0.48 | 0.91 | 0.39 | 0.39 | 1.01 | 0.83 | 0.81 | 1.36 | 1.27 | 0.76 | 0.70 | 1.40 | 0.40 | 0.76 | 0.52 | 0.80 | 10.9 m |
|          | Ours                              | 0.50 | 0.82 | 0.37 | 0.37 | 1.12 | 0.74 | 0.73 | 1.18 | 1.29 | 0.68 | 0.77 | 0.90 | 0.42 | 0.66 | 0.49 | 0.74 | 18.4 m |

Figure: Chamfer distance and average computational time for Surface Reconstruction on the *DTU* dataset

# Results: Ablation

|                                    | Precision ↑ | Recall ↑ | F-score ↑ |
|------------------------------------|-------------|----------|-----------|
| A. Mip-Splatting w/ TSDF           | 0.15        | 0.25     | 0.16      |
| B. Mip-Splatting w/ GOF            | 0.40        | 0.33     | 0.36      |
| C. Ours w/o GOF                    | 0.37        | 0.45     | 0.39      |
| D. Ours w/o normal consistency     | 0.41        | 0.35     | 0.37      |
| E. Ours w/o decoupled appearance   | 0.49        | 0.39     | 0.43      |
| F. Ours w/ minimal axis's normal   | 0.46        | 0.36     | 0.40      |
| G. Ours w/o improved densification | 0.52        | 0.39     | 0.44      |
| H. Ours                            | 0.54        | 0.42     | 0.46      |

**Figure:** Comparative performance on the *Tanks and Temples* dataset, with and without each of the strategies proposed in the paper for surface reconstruction

# Strengths

- Innovative contributions that can be implemented to existing and future Gaussian Splatting methodologies;
- Best surface reconstruction among state-of-the-art explicit methods with computational cost significantly smaller than implicit methods;
- Unprecedented capacity for background mesh reconstruction in unbounded scenes;
- The definition of the Opacity field elegantly associates surface reconstruction with available view information.

## Weaknesses

- Some equations are not written in a rigorous manner or have minor mistakes;
- The definition of the Gaussian normal is unclear in the paper, and the reason it works is only justified empirically;
- The desired properties of the Opacity field that align its levelsets with object surfaces are not mathematically proved;
- There is no quantitative experiment backing the paper's claim that the meshes it generates are compact;
- We have found it difficult to run the source code provided by the authors in order to replicate the paper's results.

# Conclusion

- The paper introduces a novel strategy for surface reconstruction employing the Opacity field and Marching Tetrahedra;
- There is extensive experimentation on well-established datasets showing an improvement in surface reconstruction over the state-of-the-art;
- More attention should be paid to the mathematical aspects of the methodology, towards clarity and rigor;
- All things considered, we believe this paper should be **accepted**.

Archaeologist  
*Mateus Barbosa*

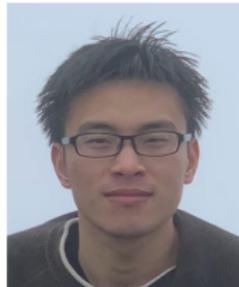
## Gaussian Opacity Fields

### Efficient Adaptive Surface Reconstruction in Unbounded Scenes

SIGGRAPH ASIA 2024 (Journal Track)

Zehao Yu<sup>1,2</sup> Torsten Sattler<sup>3</sup> Andreas Geiger<sup>1,2</sup>

<sup>1</sup>University of Tübingen <sup>2</sup>Tübingen AI Center <sup>3</sup>Czech Technical University in Prague



# Context of GOF

Some of the authors' previous collaborations include:

- **MonoSDF: Exploring Monocular Geometric Cues for Neural Implicit Surface Reconstruction.**

**Zehao Yu**, Songyou Peng, Michael Niemeyer, **Torsten Sattler**, **Andreas Geiger**. 2022

- **Mip-Splatting: Alias-free 3D Gaussian Splatting.**

**Zehao Yu**, Anpei Chen, Binbin Huang, **Torsten Sattler** and **Andreas Geiger**. 2024

- **2D Gaussian Splatting for Geometrically Accurate Radiance Fields.**

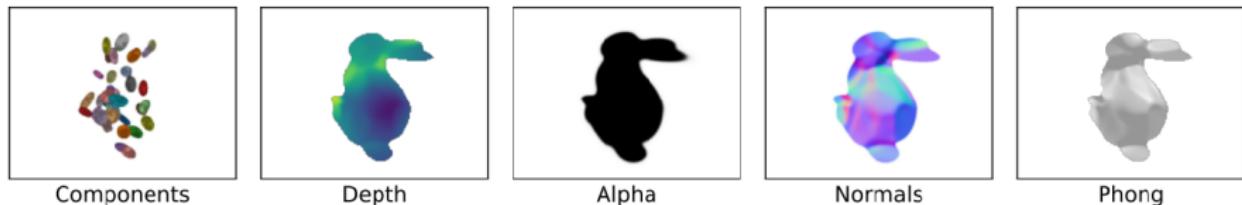
Binbin Huang, **Zehao Yu**, Anpei Chen, **Andreas Geiger** and Shenghua Gao. 2024

## Context of GOF

- Other attempts on surface reconstruction with Gaussians had limited results.
- SuGaR used Poisson reconstruction. 2DGS used 2D disks and TSDF fusion.
- What sets GOF apart from other surface extraction methods is that it constructs opacity fields using a ray-tracing approach that relies on a method of intersecting the ray and the Gaussian.
- They attribute the intersection definition to Keselman and Hebert 2022.

## Previous paper

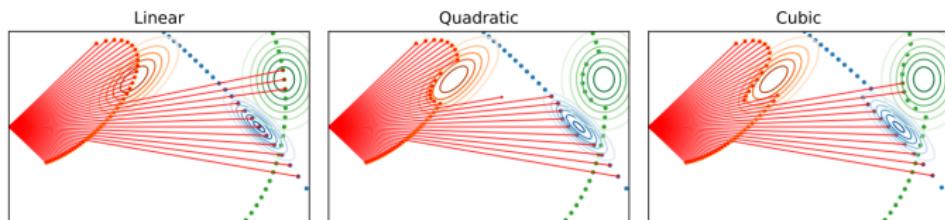
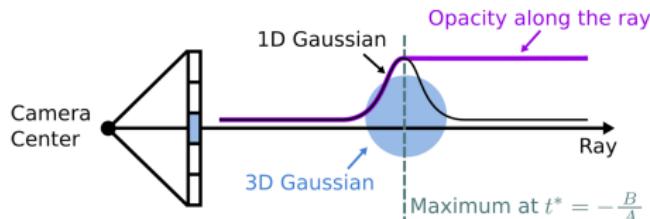
Leonid Keselman and Martial Hebert. 2022. Approximate Differentiable Rendering with Algebraic Surfaces. In European Conference on Computer Vision (ECCV).



- Develops a ray-tracing formulation for Gaussians which implicitly defines the surface.
- To do this they develop a way of defining intersections between Gaussians and rays, and a way of combining intersections across all Gaussians.

# Previous paper

- Keselman and Hebert 2022 proposes to approximate the intersection of ray with 3D Gaussian as a point where the 3D Gaussian's contribution peaks.
- GOF adopts this suggestion.



# Reception of the paper

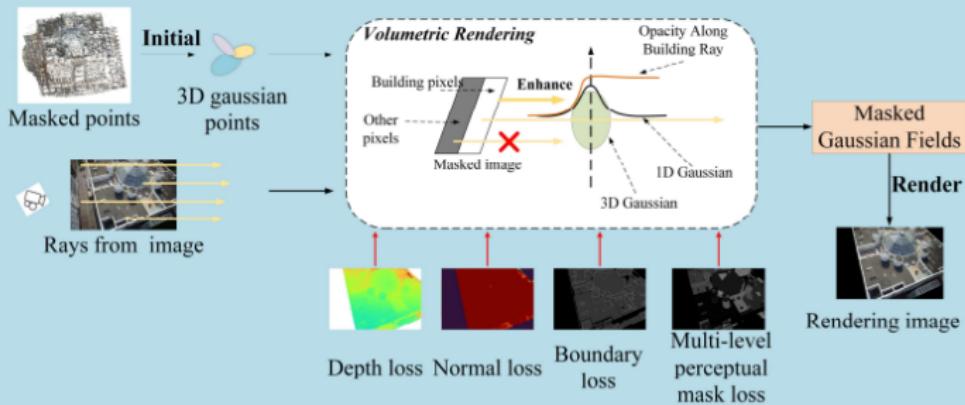
- Currently has 34 citations.
- 10/34 actually incorporate elements of the paper.
- 6/10 adopt only the improved densification.

## MGFs: Masked Gaussian Fields for Meshing Building based on Multi-View Images

Tengfei Wang, Zongqian Zhan\*, Rui Xia, Linxia Ji, Xin Wang\*

School of Geodesy and Geomatics, Wuhan University, 129 Luoyu Road, Wuhan 430072, People's Republic of China

### Masked Gaussian Fields Training and Rendering



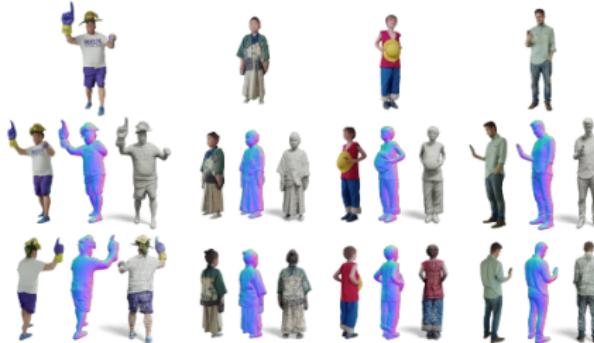
## Human 3Diffusion: Realistic Avatar Creation via Explicit 3D Consistent Diffusion Models

Yuxuan Xue<sup>1,2</sup> Xianghui Xie<sup>1,2,3</sup> Riccardo Marin<sup>1,2</sup> Gerard Pons-Moll<sup>1,2,3</sup>

<sup>1</sup>University of Tübingen <sup>2</sup>Tübingen AI Center

<sup>3</sup>Max Planck Institute for Informatics, Saarland Informatics Campus

<https://yuxuan-xue.com/human-3diffusion/>



- Creates 3D Gaussian Splats of realistic avatars with high-fidelity geometry and texture.
- Uses GOF to generate depth map.
- But performs volumetric TSDF fusion to extract the meshes.

# Hacker *Esteban Wirth*

# Overall Structure of Code

- Initializes points in 3 dimensions with previous runs of COLMAP
- Trains RGB and depth model using 3DGS and 2DGS loss functions and model. Also uses densification. (Note here Mip-Splatting is also used with the 3D-filter)
- Finally the code extracts the mesh from the depth calculations using a binary search over the tetrahedra vertices and renders the scene.

# Training

- Loss functions are taken from 3DGS and 2DGS. Hyperparameters for depth distortion and normal consistency are hard coded as 100 and 0.05. Applies them after 15000 iterations.
- Cameras are taken randomly from the list of training cameras. It goes through every camera before repeating itself.
- It has hard-coded to use around 30% of the iterations a high-resolution camera.
- It densifies every 100 iterations. Beginning at iteration 500 up until iteration 15000.
- Reset the opacity every 3000 iterations.
- Increases the Spherical Harmonics maximum degree every 1000 iterations

# Mesh Reconstruction

- Using binarysearch over the mesh and the Gaussian Opacity Field they extract the surface

```
17 def evaluate_alpha(points, views, gaussians, pipeline, background, kernel_size, return_color=False):
18     final_alpha = torch.ones((points.shape[0]), dtype=torch.float32, device="cuda")
19     if return_color:
20         final_color = torch.ones((points.shape[0], 3), dtype=torch.float32, device="cuda")
21
22     with torch.no_grad():
23         for _, view in enumerate(tqdm(views, desc="Rendering progress")):
24             ret = integrate(points, view, gaussians, pipeline, background, kernel_size=kernel_size)
25             alpha_integrated = ret["alpha_integrated"]
26             if return_color:
27                 color_integrated = ret["color_integrated"]
28                 final_color = torch.where((alpha_integrated < final_alpha).reshape(-1, 1), color_integrated, final_color)
29                 final_alpha = torch.min(final_alpha, alpha_integrated)
30
31             alpha = 1 - final_alpha
32     if return_color:
33         return alpha, final_color
34     return alpha
```

Figure: Code to construct GOF

# Results of the Experiment: Original model vs No Regularization 7000 steps



Figure: Original hyperparameters



Figure: Hyperparameters set to 0

# Results of the Experiment: Original model vs No Regularization 30000 steps



Figure: Original hyperparameters

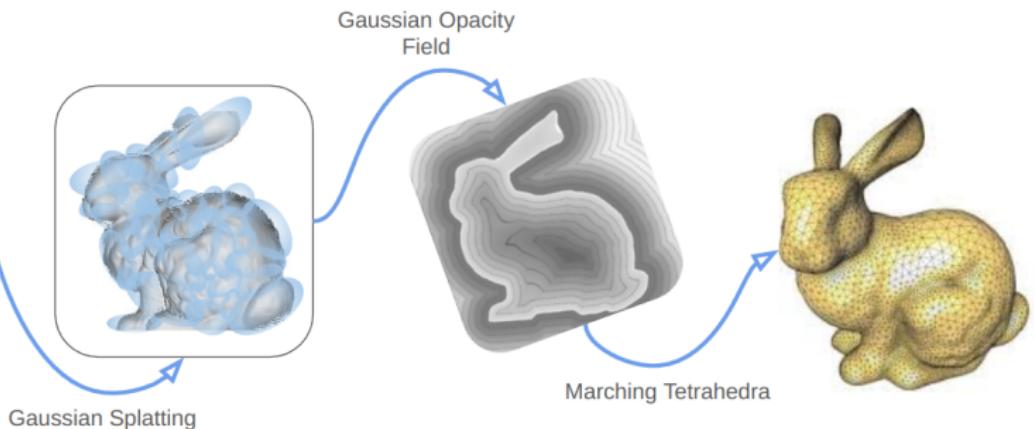


Figure: Hyperparameters set to 0

Phd Researcher  
*Diana Aldana*

# Summary

GOF prospective title: Gaussian SDF for multiview scenes



# Characteristics

## Advantages

- Fast runtime.
- Background reconstruction.
- Accuracy against explicit methods.

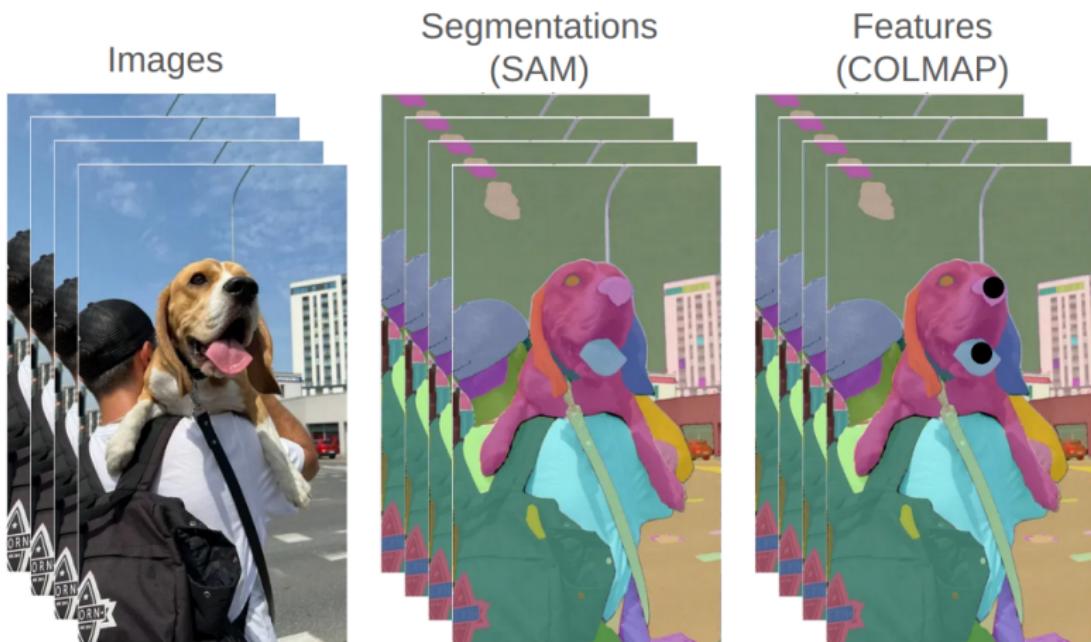
## Limitations

- Accuracy against implicit methods.
- Delaunay Triangulation Efficiently
- Opacity evaluation optimization.
- View dependant appearance modeling.



# **Title: Segmentation of multiview unbounded scenes via Gaussians**

# Previous to training

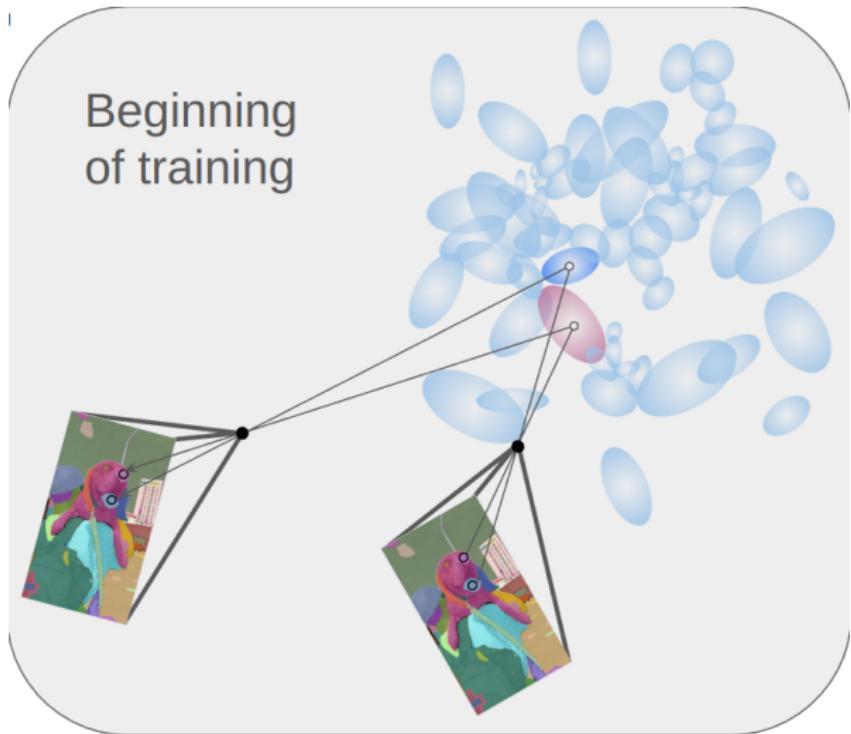


# Gaussian grouping

Clusterize the gaussians such that each group corresponds to a different object.



Contrastive learning

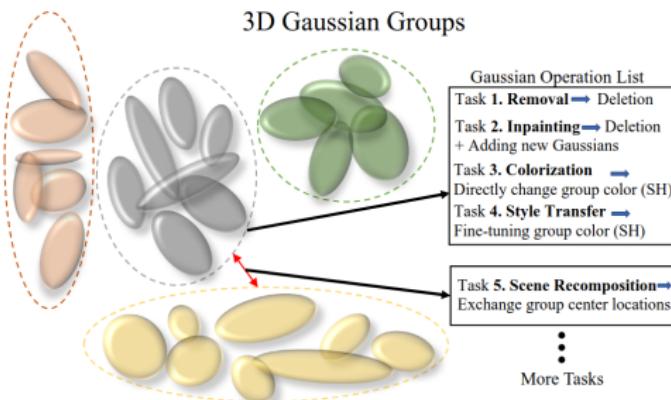


# Implementation ideas

Possible contrastive learning loss:

$$\mathcal{L}_{contra} = -\frac{1}{|\Omega|} \sum_{\Omega_j \in \Omega} \sum_{u \in \Omega_j} \log \frac{\exp(\text{sim}(\mathbf{F}_u, \bar{\mathbf{F}}_j))}{\sum_{\Omega_l \in \Omega} \exp(\text{sim}(\mathbf{F}_u, \bar{\mathbf{F}}_j))}$$

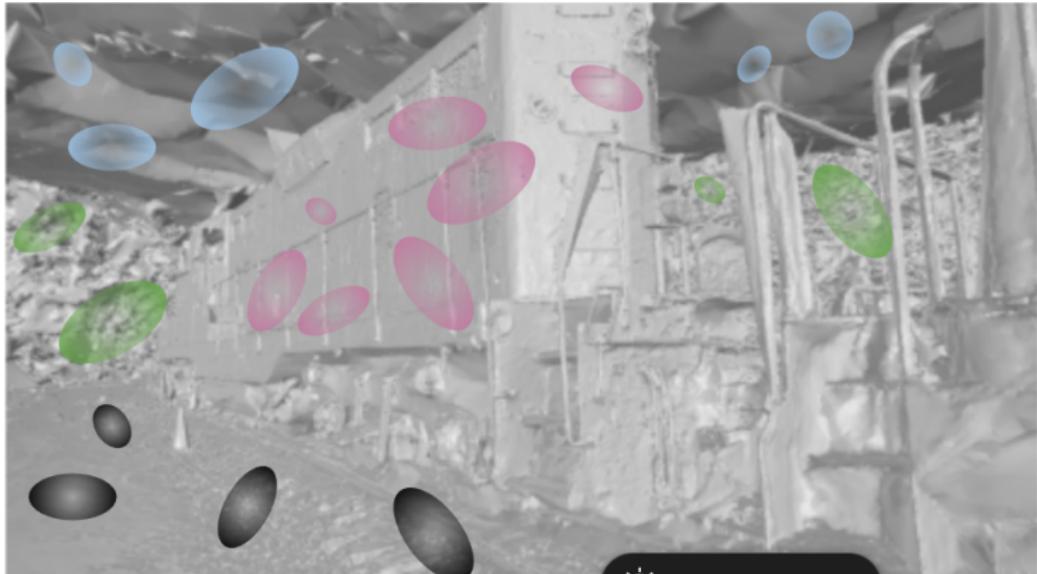
where  $\Omega$  is the set of pixels,  $\Omega_j$  is the set of pixels of the  $j$ -th group,  $\text{sim}$  is a similarity kernel and  $\bar{\mathbf{F}}_j$  are the features of the centroid gaussian of group  $j$ .



Operations over the gaussians:

- Change of groups.
- Densify on different groups.

## After training



Advantages:

- Implicit/explicit object representation.
- Speed up mesh reconstruction.
- Operations over a single scene's object.

## Related references

- Object-Aware Lifting For 3d Scene Segmentation In Gaussian Splatting:
  - Doesn't show results for unbounded scenes
- Gaussian grouping: Segment and edit anything in 3d scenes [8]:
  - Uses gaussians to modify objects on the scene
- CoSSegGaussians: Compact and Swift Scene Segmenting 3D Gaussians with Dual Feature Fusion [2]:
  - 3D segmentation.
  - Erasure/translation of objects. Their work presents many artefacts.
- Hugs: Holistic urban 3d scene understanding via gaussian splatting (CVPR) [9]:
  - Dynamic scene decomposition on traffic.
  - Use optical flow to translate/rotate objects with precision.
  - Don't show the reconstruction of their geometry.

# Bibliography I

- [1] Jonathan T Barron et al. "Mip-nerf 360: Unbounded anti-aliased neural radiance fields". In: *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*. 2022, pp. 5470–5479.
- [2] Bin Dou et al. "CoSSegGaussians: Compact and Swift Scene Segmenting 3D Gaussians with Dual Feature Fusion". In: *arXiv preprint arXiv:2401.05925* (2024).
- [3] Binbin Huang et al. "2d gaussian splatting for geometrically accurate radiance fields". In: *ACM SIGGRAPH 2024 Conference Papers*. 2024, pp. 1–11.
- [4] Bernhard Kerbl et al. "3D Gaussian Splatting for Real-Time Radiance Field Rendering.". In: *ACM Trans. Graph.* 42.4 (2023), pp. 139–1.
- [5] Jonas Kulhanek and Torsten Sattler. "Tetra-nerf: Representing neural radiance fields using tetrahedra". In: *Proceedings of the IEEE/CVF International Conference on Computer Vision*. 2023, pp. 18458–18469.
- [6] Zhaoshuo Li et al. "Neuralangelo: High-fidelity neural surface reconstruction". In: *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 2023, pp. 8456–8465.

## Bibliography II

- [7] Jiaqi Lin et al. "Vastgaussian: Vast 3d gaussians for large scene reconstruction". In: *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 2024, pp. 5166–5175.
- [8] Mingqiao Ye et al. "Gaussian grouping: Segment and edit anything in 3d scenes". In: *arXiv preprint arXiv:2312.00732* (2023).
- [9] Hongyu Zhou et al. "Hugs: Holistic urban 3d scene understanding via gaussian splatting". In: *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 2024, pp. 21336–21345.

# Thank you!