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Introduction

The paper proposes an improvement on the method of 3D Gaussian Splatting
for surface reconstruction and novel-view synthesis;

Its central contribution is the development of the Opacity field, derived from
the same images used for training the model;

Improvements are also made to the 3DGS training process;

The contributions are modular, which allows for their incorporation in
different Gaussian Splatting pipelines.
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Objectives

Surface reconstruction from multiple views of a static scene;

Creating a mesh that accurately describes the surface of the observed objects;

Keeping a manageable mesh size and computing time compared to the state
of the art;

Extract accurate background meshes in unbounded scenes, a challenge which
existing methods such as Neuralangelo [6] and 2DGS [3] still struggle with.
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Methodology: Gaussian Primitives

Similar to 3DGS [4], GOF models the scene through a set of K 3D Gaussian
primitives G1, . . . ,GK ;

For a point x in world space, a Gaussian Gk is defined as follows:

Gk(x) = e−
1
2 (x−pk)

T ·Σk
−1·(x−pk) (1)

where pk is the Gaussian’s center and Σk := Rk · Sk · Sk
T ·Rk

T is the
variance matrix;

Gk are evaluated on a set of rays departing from each camera position;

Unlike 3DGS, in GOF the Gaussians are not ”splatted” on screen space.
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Methodology: Ray-Splat Intersection

GOF parameterizes a ray with origin at a point o with unit direction r as

x(t) = o+ t r; (2)

To find the ray-Gaussian intersection, GOF expresses the ray in the Gaussian
Gk’s coordinate system:

og =Sk
−1 ·Rk

T · (o− pk) (3)
rg =Sk

−1 ·Rk
T · r (4)

xg =og + t rg (5)

* In the paper, the definitions of og and rg have a minor mistake: the authors
write Rk instead of Rk

T .
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Ray-Splat Intersection (cont.)

It can be shown that the value of Gk along the ray becomes a 1D Gaussian:

Gk(o+ rt) = G1D
k (t) = e−

1
2 (xg

T ·xg) = e−
1
2 (rg

T ·rgt2+2og
T ·rgt+rg

T ·rgt2) (6)

(6) enables the computation of the depth t∗ at which G1D
k is maximized:

E(Gk,o, r) = sup
t∈R

G1D
k (t) = G1D

k (t∗) (7)

t∗ =− og
T · rg

rgT · rg
. (8)
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Rendering

As in 3DGS, a ray’s color is calculated through alpha-blending:

c(o, r) =

K∑
k=1

ckαkE(Gk,o, r)

k−1∏
j=1

(1− αjE(Gj ,o, r)), (9)

where ck is an RGB color parameterized with spherical harmonics, and
αk ∈ [0, 1] is the weight, or opacity, of each Gaussian primitive;
The K Gaussians are sorted using the depth.
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Opacity Field

For each Gaussian and viewing ray, one can define the opacity along the ray:

Ok(Gk,o, r, t) :=

{
G1D
k (t) , if t ≤ t∗

G1D
k (t∗) , if t > t∗

(10)
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Gaussian Opacity Field

The definition extends to multiple Gaussians through alpha-blending:

O′(o, r, t) :=
K∑

k=1

αkOk(Gk,o, r, t)

k−1∏
j=1

(
1− αjOj(Gj ,o, r, t)

)
; (11)

Finally, the Gaussian Opacity Field O : R3 7→ [0, 1] is defined as the minimum
opacity of a point x along all viewing rays:

O(x) := min
(o,r)

({
O′(o, r, t) : x(t) = o+ t r

}
∪ {1}

)
; (12)

This field measures how visible a given point is in relation to the training
camera views: a point of opacity 1 is understood to be on the interior an
object or outside the bounds of the scene;

* The paper writes O(x) := min(o,r) O
′(o, r, t), which is not rigorous.
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Depth Distortion Regularization
The Gaussian positions pk, rotations Rk, scales Sk and weights αk are
optimized simultaneously through gradient descent;
The paper adapts the depth distortion regularization from 2DGS [3] and
Mip-NeRF [1]. For each Gaussian intersecting a ray (o, r), one defines:

ωi := αkE(Gi,o, r)

i−1∏
j=1

(
1− αjE(Gj ,o, r)

)
, (13)

where Gi are the Gaussians sorted along the ray;
Summing over every pair of Gaussians i, j along the ray results in the depth
distortion loss:

Ld :=

K∑
i=1

K∑
j=1

ωiωj |t∗i − t∗j |; (14)

The gradient of (14) is only applied to t∗i , which leads to grouping primitives
closer together without affecting their α values;

* The paper might benefit from a more clear definition of (14), as well as a
thorough explanation of its benefits.
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Normal Consistency Regularization

2DGS [3] introduced a successful approach for aligning planar Gaussians to
the object’s actual surface, in the form of an additional regularization term
for each viewing ray:

Ln :=
∑
i

ωi(1− ni
T ·N), (15)

where ni is the normal of the i-th Gaussian along the ray and N is the
normal estimated from the depth map;
To adapt it to GOF, one must define the normal vector of a 3D Gaussian for
a given viewing ray;

* The definition used for the normal (next slide) is not sufficiently explained or
justified in paper.

L. Mendonça | M. Barbosa | E. Wirth | D. Aldana IMPA October 22, 2024 13 / 52



Gaussian Normal Vector

The text of the paper defines the normal as being ng = −rg in the Gaussian
coordinate system. Then, to get the normal in world coordinates, one
”reverses” normalization and scaling: n = −Rk

T · Sk
−1 · rg ;

Following our corrected definition of rg, the normal direction becomes

ng = −Rk
T · Sk

−2 ·Rk
T · r; (16)

* Despite what is stated in the text, this is not equivalent to normalizing and
denormalizing;

* The ablation section shows good quantitative results for this approach, but a
better mathematical explanation is required.
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Final Loss Function

The loss function for optimizing the Gaussian primitives is

L := Lc + αLd + βLn; (17)

Lc is an RGB reconstruction loss modified by a decoupled appearance
approach taken from Vastgaussian [7];
α and β are hyperparameters given in 2DGS [3].
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Densification

In 3DGS [4], Gaussian primitives are cloned or split when their view-space
gradient reaches a certain threshold τ ;
This paper proposes replacing the gradient with a sum of norms of the
individual pixel gradients:

M :=
∑
i

∥∥∥∥ dL

dpi

dpi

dx

∥∥∥∥ ; (18)

This prevents the gradient from ”cancelling out” between different views;
The ablation shows this metric yields better results than the one used in
3DGS.
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Surface Extraction

Finally, the objects’ surface is defined as a level set of opacity:
{x : O(x) = 0.5} ;
Some points of interest are created on a bounding box of size 3σ around each
Gaussian;
A sparse mesh of tetrahedrons is created through Delaunay triangulation
from these points;
A Marching Tetrahedra algorithm [5] modified with a binary search is then
used to extract a triangular mesh corresponding to this surface ;
Creating the tetrahedrons only in the Gaussian’s bounding boxes limits the
computation time and the complexity of the final triangular mesh.

L. Mendonça | M. Barbosa | E. Wirth | D. Aldana IMPA October 22, 2024 17 / 52



Surface Reconstruction Pipeline
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Contributions

The paper’s main contributions to the state-of-the-art are:
1 Applying the depth distortion and normal consistency regularizations from

2DGS [3] to 3D Gaussian optimization;
2 Defining the Gaussian Opacity Field for delimiting the surface of an object or

scene;
3 Proposing an efficient method for extracting a mesh from a 3D Gaussian

cloud, by adapting the Marching Tetrahedra [5] algorithm.
These contributions can be implemented together, as proposed in the paper,
or separately, as part of a different Gaussian Splatting pipeline;
As an example, the authors apply (2) and (3) to the output of Mip-Splatting
in order to extract a surface mesh.
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Results: Surface Reconstruction

Figure: Normal maps from meshes generated for the Tanks and Temples dataset
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Results: Surface Reconstruction

Figure: F1-score and computational time for surface reconstruction on the Tanks and
Temples scenes (only foreground objects)

Figure: Chamfer distance and average computational time for Surface Reconstruction on
the DTU dataset
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Results: Ablation

Figure: Comparative performance on the Tanks and Temples dataset, with and without
each of the strategies proposed in the paper for surface reconstruction
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Strengths

Innovative contributions that can be implemented to existing and future
Gaussian Splatting methodologies;
Best surface reconstruction among state-of-the-art explicit methods with
computational cost significantly smaller than implicit methods;
Unprecedented capacity for background mesh reconstruction in unbounded
scenes;
The definition of the Opacity field elegantly associates surface reconstruction
with available view information.
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Weaknesses

Some equations are not written in a rigorous manner or have minor mistakes;
The definition of the Gaussian normal is unclear in the paper, and the reason
it works is only justified empirically;
The desired properties of the Opacity field that align its levelsets with object
surfaces are not mathematically proved;
There is no quantitative experiment backing the paper’s claim that the
meshes it generates are compact;
We have found it difficult to run the source coded provided by the authors in
order to replicate the paper’s results.
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Conclusion

The paper introduces a novel strategy for surface reconstruction employing
the Opacity field and Marching Tetrahedra;
There is extensive experimentation on well-established datasets showing an
improvement in surface reconstruction over the state-of-the-art;
More attention should be paid to the mathematical aspects of the
methodology, towards clarity and rigor;
All things considered, we believe this paper should be accepted.
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Context of GOF
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Context of GOF

Some of the authors’ previous collaborations include:
MonoSDF: Exploring Monocular Geometric Cues for Neural Implicit
Surface Reconstruction.
Zehao Yu, Songyou Peng, Michael Niemeyer, Torsten Sattler, Andreas
Geiger. 2022

Mip-Splatting: Alias-free 3D Gaussian Splatting.
Zehao Yu, Anpei Chen, Binbin Huang, Torsten Sattler and Andreas
Geiger. 2024

2D Gaussian Splatting for Geometrically Accurate Radiance Fields.
Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger and Shenghua Gao.
2024
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Context of GOF

Other attempts on surface reconstruction with Gaussians had limited results.
SuGaR used Poisson reconstruction. 2DGS used 2D disks and TSDF fusion.
What sets GOF apart from other surface extraction methods is that it
constructs opacity fields using a ray-tracing approach that relies on a method
of intersecting the ray and the Gaussian.
They attribute the intersection definition to Keselman and Hebert 2022.
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Previous paper

Leonid Keselman and Martial Hebert. 2022. Approximate Differentiable Rendering
with Algebraic Surfaces. In European Conference on Computer Vision (ECCV).

Develops a ray-tracing formulation for Gaussians which implicitly defines the
surface.
To do this they develop a way of defining intersections between Gaussians
and rays, and a way of combining intersections across all Gaussians.
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Previous paper

Keselman and Hebert 2022 proposes to approximate the intersection of ray
with 3D Gaussian as a point where the 3D Gaussian’s contribution peaks.
GOF adopts this suggestion.
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Reception of the paper

Currently has 34 citations.
10/34 actually incorporate elements of the paper.
6/10 adopt only the improved densification.
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Next paper
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Next paper

Creates 3D Gaussian Splats of realistic avatars with high-fidelity geometry
and texture.
Uses GOF to generate depth map.
But performs volumetric TSDF fusion to extract the meshes.
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Overall Structure of Code

Initializes points in 3 dimensions with previous runs of COLMAP
Trains RGB and depth model using 3DGS and 2DGS loss functions and
model. Also uses densification. (Note here Mip-Splatting is also used with
the 3D-filter)
Finally the code extracts the mesh from the depth calculations using a binary
search over the tetrahedra vertices and renders the scene.
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Training

Loss functions are taken from 3DGS and 2DGS. Hyperparamters for depth
distortion and normal consistency are hard coded as 100 and 0.05. Applies
them after 15000 iterations.
Cameras are taken randomly from the list of training cameras. It goes
through every camera before repeating itself.
It has hard-coded to use around 30% of the iterations a high-resolution
camera.
It densifies every 100 iterations. Begining at iteration 500 up until iteration
15000.
Reset the opacity every 3000 iterations.
Increases the Spherical Harmonics maximum degree every 1000 iterations
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Mesh Reconstruction

Using binarysearch over the mesh and the Gaussian Opacity Field they
extract the surface

Figure: Code to construct GOF
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Results of the Experiment: Original model vs No
Regularization 7000 steps

Figure: Original hyperparameters Figure: Hyperparameters set to 0
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Results of the Experiment: Original model vs No
Regularization 30000 steps

Figure: Original hyperparameters Figure: Hyperparameters set to 0
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Summary

GOF prospective title: Gaussian SDF for multiview scenes
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Characteristics

Advantages
Fast runtime.
Background reconstruction.
Accuracy against explicit
methods.

Limitations
Accuracy against implicit methods.
Delaunay Triangulation Efficiently
Opacity evaluation optimization.
View dependant appearance
modeling.

L. Mendonça | M. Barbosa | E. Wirth | D. Aldana IMPA October 22, 2024 43 / 52



New project

Title: Segmentation of multiview
unbounded scenes via Gaussians
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Previous to training
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Gaussian grouping

Clusterize the gaussians
such that each group
corresponds to a
different object.
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Implementation ideas

Possible contrastive learning loss:

Lcontra = − 1

|Ω|
∑
Ωj∈Ω

∑
u∈Ωj

log
exp

(
sim(Fu, F̄j)

)∑
Ωl∈Ω exp

(
sim(Fu, F̄j)

)
where Ω is the set of pixels, Ωj is the set of pixels of the j-th group, sim is a
similarity kernel and F̄j are the features of the centroid gaussian of group j.

Operations over the gaussians:
Change of groups.
Densify on different groups.
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After training

Advantages:
Implicit/explicit object representation.
Speed up mesh reconstruction.
Operations over a single scene’s object.
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Related references

Object-Aware Lifting For 3d Scene Segmentation In Gaussian Splatting:
Doesn’t show results for unbounded scenes

Gaussian grouping: Segment and edit anything in 3d scenes [8]:
Uses gaussians to modify objects on the scene

CoSSegGaussians: Compact and Swift Scene Segmenting 3D Gaussians with
Dual Feature Fusion [2]:

3D segmentation.
Erasure/translation of objects. Their work presents many artefacts.

Hugs: Holistic urban 3d scene understanding via gaussian splatting (CVPR)
[9]:

Dynamic scene decomposition on traffic.
Use optical flow to translate/rotate objects with precision.
Don’t show the reconstruction of their geometry.
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Thank you!
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