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Introduction

Today, essentially all SotA 3D reconstruction methods are based on top of SfM
methods like COLMAP.

Good results, but is not differentiable w.r.t. its free variables (camera poses,
camera intrinsics and per-pixel depths)

Flowmap is an end-to-end differentiable method that solves for precise camera
poses, camera intrinsics, and per-frame dense depth of a video sequence.
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Supervision via Camera-Induced Flow

Given a video sequence, the goal is to supervise per-frame estimates of depth,
intrinsics, and pose using known correspondences.

That will be done using the optical flow induced by the camera movement through
the scene.

The known correspondences are derived from two sources: 1) dense optical flow
between adjacent frames and 2) sparse point tracks which span longer windows.
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Optical flow loss

Unproject Transform

Compute Loss

Fig. 3: Camera-Induced Flow Loss. To use a known correspondence u;; to compute
a loss £, we unproject u; using the corresponding depth map D; and camera intrinsics
K, transform the resulting point x; via the relative pose P;;, reproject the transformed
point to yield 0;;, and finally compute £ = |[t;; — u;j]|.
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Parametrizing depth, pose and camera intrinsics

Inputs Depth NN |D | Intrinsics Solver |[K | Pose Solver |P | Corresp. Loss
@®RGB Sec. 5 @ Sec. 5 & ~| Fig. / & Fig. 3 @@
@® Flow 1 1 J |

@ Tracks

FlowMap: High-Quality Camera Poses, Intrinsics, and Depth via Gradient Descent (2024)



Depth neural network

Depth is parametrized as a neural network that maps an RGB frame to the
corresponding per-pixel depth.

This ensures that similar patches have similar depths, allowing FlowMap to
integrate geometry cues across frames: if a patch receives a depth gradient from
one frame, the weights of the depth network are updated, and hence the depths of
all similar video frame patches are also updated.
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Intrinsics as a function of depth and optical flow

Camera intrinsics is solved by considering a set of reasonable candidates.
Loss function is calculated considering the pose calculated by K, .
Intrinsics K is computed via softmin-weighted sum of the candidates.

_ exp(—Lx)
D expl—iLr)

K = Z’kak W
k
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Pose as a function of depth, intrinsics and optical flow
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Depth maps D, and Dj are unprojected with their respective intrinsics to generate point

clouds X;and X ; .

Points in the clouds are matched using the known optical flow, generating X;” and X5
The diagonal matrix 2/ contains correspondence weights that can down-weight
correspondences that are faulty due to occlusion or imprecise flow.

Py — argm1n||W1/2(XH PX:)|l5
PEcSE(3)

Solve for P;;
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Pose as a function of depth, intrinsics and optical flow
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Solve for P;;

P;; = argmin|W'3(X$ — PX{)||3
PcSE(3)

R =USV7andt = (X — RX)W1, where USV’ = SVD(Zx/x),
Sxx = XKWKXT K =1— /wyw ,and S = diag(1, ..., det(U)det(V)).
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Novel view synthesis results

MipNeRF 360 (3 scenes)

LLFF (7 scenes)

Method | PSNR 1+ SSIM 1+ LPIPS | Time (min.) | ATE | PSNR 1+ SSIM 1+ LPIPS | Time (min.) | ATE
FlowMap 29.84 0.916 0.073 19.8 0.00055 27.23 0.849 0.079 7.5 0.00209
COLMAP 29.95  0.928 0.074 4.8 N/A 25.73  0.851 0.098 1 N/A
COLMAP (MVS) 31.03  0.938 0.060 42.5 N/A 27.99  0.867 0.072 13.4 N/A
DROID-SLAM* 29.83 0.913 0.066 0.6 0.00017 26.21 0.818 0.094 0.3 0.00074
NoPE-NeRF* 13.60 0.377 0.750 1913.1 0.04429 17.35 0.490 0.591 1804.0 0.03920
| Tanks & Temples (14 scenes) | CO3D (2 scenes)
Method | PSNR 1 SSIM t+ LPIPS | Time (min.) | ATE | PSNR t SSIM 1+ LPIPS | Time (min.) | ATE
FlowMap 27.00  0.854 0.101 22.3 0.00124 31.11  0.896 0.064 22.1 0.01589
COLMAP 26.74 0.848 0.130 5.9 N/A 25.17 0.750 0.190 12.6 N/A
COLMAP (MVS) |[72743 " 0:863"0:097 514 N/A| 2535 0.762  0.175 520 N/A
DROID-SLAM* 25.70 0.824 0.133 0.8 0.00122 25.97 0.790 0.139 0.8 0.01728
NoPE-NeRF* 13.38 0.449 0.706 2432.9 0.03709 14.97 0.400 0.770 2604.9 0.03648
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Comparison to other methods

Method 25 views 50 views 100 views 200 views full Method MIP-360 LLFF T&T CO3Dv2
ATE| Reg.T ATE]| Reg.T ATE]| Reg.T ATE| Reg.T ATE| Reg.T
NoPE-NeRF [8] 0.04429 0.03920 0.03709 0.03648
COLMAP [46] | 0.03840 44.4 0.02920 60.5 0.02640 85.7 0.01880 97.0 y .
ACE-Zero [9] |0.11160 [100.0° 0.07130 /10007 0.03980 /100.0° 0.01870 |100.0" ~0.01520 '100.0 DROID-SLAM [54] | 0.00017 | 0.00074 ' 0.00122 0.01728
FlowMap [50]  0.10700 | 100.0 0.07310 |100.0 0.04460 100.0 0.02420 | 100.0 N/A  66.7 FlowMap [50] 0.00055 0.00209 0.00124 0.01589
VGGSfM [62] 0.05800 96.2 0.03460 | 98.7 0.02900 | 98.5 N/A  47.6 N/A 0.0 ACE-Zero [9] 0.00173 0.00396 0.00973 0.00520
DE-SfM [20]  0.08110 | 99.4 0.04120 [ 100.0 0.02710  99.9 N/A 333 N/A  76.2
MASt3R-SfM | 0.03360 | 100.0 | 0.02610 [100.0 | 0.01680 100.0 | 0.01300 '100.0 ' 0.01060 100.0 MASt3R-SM 0.00079 0.00098 0.00215 0.00538

Table 1: Results on Tanks&Temples in terms of ATE and overall registration rate (Reg.). For easier readability,
we color-code ATE results as a linear gradient between worst and best ATE for a given dataset or split; and
Reg results with linear gradient between 0% and 100%. Left: impact of the number of input views, regularly
sampled from the full set. ‘N/A’ indicates that at least one scene did not converge. Right: ATE| on different
datasets with the arbitrary splits defined in FlowMap [50].

Results from: Duisterhof, B. et al. (2024). MASt3R-SfM: a Fully-Integrated Solution for
Unconstrained Structure-from-Motion. arXiv preprint arXiv:2409.19152.
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Estimates Intrinsics Requires Known Intrinsics
FlowMap COLMAP (MVS) DROID-SLAM NoPE-NeRF

Ground Truth
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Camera parameter estimation

Fig. 6: Qualitative Pose Estimation Comparison. FlowMap (solid red) recovers
camera poses that are very close to those of COLMAP (dotted black).
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Camera parameter estimation

Fig. 7: Point Clouds Reconstructed by FlowMap. Unprojecting FlowMap depths
using FlowMap’s intrinsics and poses yields dense and consistent point clouds.

FlowMap: High-Quality Camera Poses, Intrinsics, and Depth via Gradient Descent (2024)



Large-scale robustness study
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Fig. 8: Large-scale Robustness Study. We run FlowMap and DROID-SLAM on
420 CO3D scenes across 10 categories and plot mean ATEs with respect to CO3D’s
COLMAP-generated pose metadata. We also re-run COLMAP on the same data. Com-
pared to DROID-SLAM, which requires ground-truth intrinsics, FlowMap produces

notably lower ATEs. FlowMap’s ATE distribution is similar to one obtained by re-
running COLMAP, with most ATEs falling under 0.005 in both cases.
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Ablations

Why not free variables?

Are point tracks necessary?

®Pose @Depth @Focal ®@1-Stage @ Full

Method PSNR 1 SSIM 1t LPIPS |

Poses

® FlowMap 27.70
® Single Stage 26.66
® Expl. Focal Length 25.15
® Expl. Depth 8.84
® Expl. Pose 16.00
No Point Tracks 25.83

10—2 .

0.863 0.089
0.842 0.112
0.788 0.141
0.168 0.684
0.533 0.495
0.822 0.122
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Pre-trained depth networks?
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Strengths

Novel view synthesis results on par with COLMAP
End-to-end differentiable design
Closed form solution to pose and intrinsics estimation

New approach that differs from traditional SfM methods
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Weaknesses

e Compared to COLMAP:
o is slower
o requires significantly more GPU memory
o pose and intrinsics are less accurate and less robust
e Results compared to other contemporary methods are lackluster
e [s constrained to work on frame sequences with significant overlap (i.e., videos).
e Important details of the paper are hidden away

e Dependent of many off-the-shelf components
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In conclusion

The paper should be rejected.

e Achievements aren’t as impressive as the authors seem to suggest.
e NVS results are on-par with COLMAP only in limited scenarios.
e Other concurrent paper seem to perform better on a wider set of scenarios.

e Methods and implementation aren’t sufficiently well explained.
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Summary

Video and Off-the-Shelf FlowMap Optimization Downstream Task:
Correspondences via Gradient Descent _ Gausblan Splatting
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Previous and basement works

Inputs Depth NN [D [ntrinsics Solver [K Pose Solver |P Corresp. Loss

s
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@® Flow 1 1 j_’r

) Tracks

Depth is parameterized via a neural network

e FlowMap uses the lightweight CNN version of MiDaS in their depth network

RGB images and Inverse depth maps
depth annotation

Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot

cross-dataset transfer. IEEE Transactions on Pattern Analysis and Machine Intelligence (2020).

FlowMap: High-Quality Camera Poses, Intrinsics, and Depth via Gradient Descent (2024)



Previous and basement works
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During per-scene optimization

RAFT to compute the optical flow

Teed, Z., Deng, J.: RAFT: Recurrent all-pairs field

transforms for optical flow. In: Proceedings of the

> f=1.4

European Conference on Computer Vision (ECCV) (2020).

Cam-Flow SoftMin Selection

on Flow Errors
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During pre-training optimization

GMFlow to compute the optical flow

TXu, H., Zhang, J., Cai, J., Rezatofighi, H., Tao, D.:
GMFlow: Learning optical flow via global matching. In:

Proceedings of the IEEE/CVF Conference on Computer

Qsion and Pattern Recognition. pp. 8121-8130 (2022). /
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Previous and basement works
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Smith, C., Du, Y., Tewari, A., Sitzmann, V.: FlowCam: Training generalizable 3d radiance fields without camera poses via pixel-aligned

scene flow. Advances in Neural Information Processing Systems (NeurlPS) (2023).
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Previous and basement works

Inpu‘ts Depth NN |D Intrinsics Solver | K Pose Solver |P Corresp. Loss
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® Flow 1
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® Karaev, N., Rocco, |., Graham, B., Neverova, N., Vedaldi, A., Rupprecht, C. CoTracker: It is better to track together (2023).
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Comparative and concurrent works

COLMAP

Schonberger, J.L., Frahm, J.M. Structure-from-motion revisited. In: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR). pp. 4104—4113 (2016).

Images Correspondence Search Incremental Reconstruction Reconstruction

= Initialization - |
1 !

Matching Image Registration Outlier Filtering

Geometric Verification Triangulation Bundle Adjustment

w =

e [solated pre-processing step x
e  Sparse 3D points x

e Depth, intrinsics and camera poses: free variables x @ COLMAP
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Comparative and concurrent works

VGGSIM

Wang, J., Karaev, N., Rupprecht, C., Novotny, D.: Visual geometry grounded deep structure from motion. arXiv

preprint arXiv:2312.04563 (2023).

Input images

v
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Key differences are that their method is fully supervised with camera poses, point clouds, and intrinsics; requires large-scale, multi-stage training; solves

only for sparse depth;

and is built around the philosophy of making each part of the conventional SfM pipeline differentiable.
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Ig-slam: Instant gaussian slam (2024) - In Related Work section.

EGA4D: Explicit Generation of 4D Object without Score Distillation (2024) - In Future
Work section, as a possible alternative to incorporate camera pose technics in 4D
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D-NPC: Dynamic Neural Point Clouds for Non-Rigid View Synthesis from
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Without point tracks
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Problem

Because of its dependence on optical flow or point tracks to find correspondences,
Flowmap can only process continuous video.

The authors suggest that leveraging unstructured correspondences might be used
to overcome this limitation.
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Other attempts

Schonberger, J. L., & Frahm, J. M. (2016). Structure-from-motion revisited. In
Proceedings of the IEEE conference on computer vision and pattern recognition.

Duisterhof, B. et al. (2024). MASt3R-SfM: a Fully-Integrated Solution for
Unconstrained Structure-from-Motion. arXiv preprint arXiv:2409.19152.

He, X. et al. (2024). Detector-free structure from motion. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition.

Wang, J. et al. (2024). VGGSfM: Visual Geometry Grounded Deep Structure
From Motion. In Proceedings of the IEEE/CVF Conference on Computer Vision
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Obrigado!
Duvidas?



