4D Gaussian Splatting for Real-Time Dynamic Scene Rendering

Marcelo de Sousa - Reviewer
Marcelo de Sousa - Archaeologist
Fabricio - Hacker
Esteban - PhD Student




4D Gaussian Splatting

Reviewer - Marcelo de Sousa




1. Introduction

4D Gaussian Splatting for Real-Time Dynamic Scene Rendering (CVPR - 2024)



1. Introduction

Motivation:

e Dynamic scene rendering is critical for applications like VR, simulation, and film production.
e Existing methods (e.g., 3DGS) are limited to static or quasi-static scenes, struggling with real-time

performance and storage efficiency.
Key Challenges:

e Modeling complex motion and deformation with limited input.
e Maintaining real-time rendering speed without sacrificing quality.

e Balancing training time, storage, and computational efficiency.
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1. Introduction

Proposed Solution:

e 4D Gaussian Splatting (4D-GS):
o Combines 3D Gaussian points with a temporal deformation field to represent spatial-temporal

dynamics.
o Achieves real-time rendering with efficient training and compact storage.

How:

e Temporal-Spatial Structure Encoder.
e Multi-head Gaussian deformation Decoder.

Contributions:

e Unified framework for modeling spatial-temporal dynamics.
e High-quality rendering with minimal latency and low memory consumption O(N+F).
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2. Method
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2. Method

Overall Framework:

e Combines 3D Gaussians G with deformation fields F to model motion and deformation over time.
e Final deformed Gaussians:

G' =G+ AG
Spatial-Temporal Encoder (HexPlane):

e  Multi-resolution voxel planes:
o Encodes features RI(i, j) in spatial (x, y, z) and temporal (t) dimensions.
o Interpolates Gaussian features for efficient storage and computation:

= U H interp(R; (7, 7)),

l

(4,5) € {(z,9), (%, 2), (y,2), (x,t), (y, 1), (2, %) }-
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2. Method

Gaussian Deformation Decoder, D={¢x,¢r,Ps}:
e Multi-head MLPs predict deformations:
AX = ¢:(fn), Ar=0:(fn), As=¢s(fr)
e Updated Gaussian attributes:
X' =X+AX, r=r+Ar, s =s4+As
Finally, G'={X",s",r'",0,C}
Rendering Process:

e Deformed Gaussians G’ are projected via differentiable splatting:
f=8M,G)

S: Splatting operator, M[R,T]: View matrix.
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2. Method

Optimization: 3D Gaussian Initialization

e Why Initialization Matters:
o  Proper initialization ensures efficient training and faster convergence.
o Avoids excessive deformation during early training phases.
e Methodology:
o  Structure from Motion (SfM):
m Initializes 3D Gaussians using SfM points, leveraging geometric priors.
o Warm-Up Phase:
m  Optimize 3D Gaussians for 3000 iterations to stabilize the initial configuration.
m Render images with 3D Gaussians (i=S(M,G)) before transitioning to 4D Gaussians.
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2. Method

Iter 0 Iter 3000 Iter 20000

Random Point Cloud Input 3D Gaussian Initialization 4D Gaussian Joint Optimization

Figure 4. Illustration of the optimization process. With static 3D
Gaussian initialization, our model can learn high-quality 3D Gaus-
sians of the motion part.
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2. Method

Loss Function
e Reconstruction Loss:
Lcolor — |I — I|

e Total Variation Loss (Ltv):
o Regularizes and smooths the voxel grids.

e Combined Loss:

L=|I-1Il+L
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2. Method

stage:coarse,iter:50 . time:0.17min
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3. Experimentation and Results

Setup

e Hardware: PyTorch implementation on RTX 3090 GPU.
e Datasets:
o  Synthetic (D-NeRF): Monocular scenes with 50-200 frames.

o Real-World: HyperNeRF (simple monocular setups) and Neu3D (multi-camera, complex motion).
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3. Experimentation and Results

Ou

GT 3D-GS Ours GT HyperNeRF  TiNeuVox

3D-GS
AN e

1S

HyperNeRF  TiNeuVox

LSS

y -

\ ..1 k:\‘ ‘-1 ‘ :“.
\ A\, > ) Y- -
79 < - & .

z %z 5
= ; =
M @)
2 | 5
g £
m o
=)

on

Figure 6. Visualization of the HyperNeRF [39] dataset compared with other methods [9, 19, 22, 39]. ‘GT’ stands for ground truth images.
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3. Experimentation and Results

Table 2. Quantitative results on HyperNeRF [39] vrig dataset with the rendering resolution of 960 x 540.

Model | PSNR (dB)t MS-SSIM?T | Times| | FPST Storage (MB)|
Nerfies [38] 22.2 0.803 ~ hours <1 <
HyperNeRF [39] 224 0.814 32hours | <1 =
TiNeuVox-B [9] 24.3 0.836 30 mins 1 48
3D-GS [22] 19.7 0.680 40 mins 55 52
FFDNeRF [19] 24.2 0.842 - 0.05 440

V4D [13] 24.8 0.832 5.5 hours | 0.29 377

Ours 259 0.845 30 mins 34 61

Table 3. Quantitative results on the Neu3D [25] dataset with the rendering resolution of 1352x1014.

Model | PSNR(dB)t D-SSIM| LPIPS| | Time| | FPST  Storage (MB)|
NeRFPlayer [49] 30.69 0.034 0.111 6hours | 0.045 -
HyperReel [2] 31.10 0.036 0.096 9 hours 2.0 360
HexPlane-all* [5] 3170 0.014 0.075 | 12hours 0.2 250
KPlanes [12] 31.63 - - 1.8 hours 0.3 309
Im4D [30] 32.58 - 0.208 | 28 mins ~5 93
MSTH [53] 3230 0.015 0.056 = 20mins | 2(15%) 135

Ours 31,15 0.016 0.049 | 40 mins 30 90

*: The metrics of the models are tested without “coffee martini” and resolution is set to 1024 x768.
%: The FPS is tested with fixed-view rendering.
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3. Experimentation and Results (800x800)

Table 4. Ablation studies on synthetic datasets using our proposed methods.

Model | PSNR(dB)T SSIM{T LPIPS| | Time] | FPS{ Storage (MB)|
Ours w/o HexPlane R, (i, 7) 27.03 0.95 0.05 4 mins 140 12
Ours w/o initialization 31.91 0.97 0.03 7.5 mins 79 18
Ours w/o ¢, 26.67 0.95 0.07 8 mins 82 17
Ours w/o ¢, 33.08 0.98 0.03 8 mins 83 17
Ours w/o ¢ 33.02 0.98 0.03 8 mins 82 i
Ours 34.05 0.98 0.02 8 mins 82 18
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3. Experimentation and Results

Limitations

e Large-scale urban reconstructions require further optimization.
e Struggles with large motion and imprecise camera poses.
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4. Why 4D Gaussian Splatting Stands Out

e Unified Representation: Combines spatial and temporal features seamlessly.

e Real-Time Performance: Fast rendering with differentiable splatting, achieving up to 90 FPS.

e Efficient Encoding: HexPlane reduces memory usage while capturing fine spatial-temporal details.
e Dynamic Adaptability: Models complex deformations like stretching, twisting, and scaling.

e Monocular Flexibility: Handles monocular setups effectively, unlike multi-camera-dependent methods.
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Chuck Norris
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Exploring Key References in Dynamic Scene Representation and Rendering

Year References

2015 [7] Streamable free-viewpoint video, exploring dynamic scene representation.
2019 [63] Differentiable surface splatting for point-based geometry in dynamic scenes.
2020 [4] Layered mesh representations for light field video in dynamic scenarios.

2021 [35] NeRF techniques for dynamic view synthesis and scene representation.

[42] D-NeRF: Neural radiance fields for dynamic scenes.
2022 [22] Real-time 3D Gaussian splatting for radiance field rendering in dynamic scenes.

2023 [5] Scalable HexPlane representation optimized for dynamic environments.
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K-Planes: Method
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K-Planes: Comparison

Summary of Differences

Aspect

Representation

K-Plane

Factorized 2D planes

Rendering Ray Marching

Strategy

Efficiency Moderately fast

Dynamic Scenes Suitable but limited to space-time planes
Complexity High (factorization, interpolation,

decoding)

4D-GS
Deformable 3D Gaussians

Differentiable Splatting

Extremely fast (real-time)
Excellent for complex deformations

Moderate (Gaussians and direct

deformation)
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K-Planes: Space-time Decomposition
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Applications: Text-to-4D

An astronaut riding a horse, best An ancient roman statue dancing, full A storm trooper walking forward and
quality, 4K, HD body, portrait, game, unreal, 4K, HD vacuuming, best quality, 4K, HD
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Applications: Text-to-4D

Stage 1: Static 3D Synthesis &
x| W
e  Optimize 3D images for static scenes using MVDream.
e Enhance with Stable Diffusion for text-to-image quality.
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Applications: Text-to-4D

Stage 2: Dynamic 4D Synthesis

. Combine text-to-video and text-to-image models for 4D dynamics.
. Optimize deformation fields while ensuring high-quality frames.
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Applications: EndoGaussian
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Applications: EndoGaussian

Cutting - GT

-

Cutting - Paper
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Applications: EndoGaussian

Pulling - GT
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The Source Code

3 scene

__init__.py

camera.py

cameras.py
colmap_loader.py
dataset_readers.py
dataset.py
deformation.py
gaussian_model.py
grid.py

hexplane.py
hyper_loader.py
multipleview_dataset.py
neural_3D_dataset_NDC.py

®
@
?
®
@
@
?
L
@
?
@
@
@
®

regulation.py

L

utils.py

Source code file hierarchy
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The Source Code

create net(self):
mlp out dim = 0
self.grid_pe
grid out dim self.grid.feat_dim+(self.grid.feat dim)*2

grid out dim = self.grid.feat dim
self.no _grid:

[f.feature out [nn.Linear(4,self.W)]

[f.feature out [nn.Linear(mlp out dim + grid out dim ,self.W)]
range(self.D-1):
self.feature out.append(nn.ReLU())
self.feature out.append(nn.Linear(self.W,self.W))
f.feature out = nn.Sequential(*self.feature out)

f.pos_deform nn.Sequential(nn.ReLU(),nn.Linear(self.W,self.W),nn.ReLU(),nn.Linear(self.
f.scales deform nn.Sequential(nn.ReLU(),nn.Linear(self.W,self.W),nn.ReLU(),nn.Linear(self.
“.rotations deform nn.Sequential(nn.ReLU(),nn.Linear(self.W,self.W),nn.ReLU(),nn.Linear(se
f.opacity deform = nn.Sequential(nn.ReLU(),nn.Linear(se ,self.W),nn.ReLU(),nn.Linear(self.
f.shs deform = nn.Sequential(nn.ReLU(),nn.Linear(self.W,sel7.W),nn.ReLU(),nn.Linear(self.W,
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The Source Code

dx = self.pos deform(hidden)
ds = self.scales deform(hidden)
do = self.opacity deform(hidden)

dr = self.rotations deform(hidden)
dshs = self.shs deform(hidden).reshape([shs emb.shape[0],16,3])

AX =d:(f), Ar=0:fr); As= dalfn)
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The Source Code

pts = rays pts emb[:,:3]*mask + dx
scales = scales emb[:,:3]*mask + ds

opacity = opacity emb[:,:1]*mask + do
rotations = rotations emb[:,:4] dr
shs = shs emb*mask.unsqueeze(-1) dshs

X'=X4+AX, r=r+Ar, s =s5+As
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Reproducibility
e Easy reproduction on synthetic dataset from Dnerf, previously pre-processed
by the authors;
e Other datasets can be used, such as Hypernerf's or Dynerf's, however extra

steps are required to pre-process it, with some dependencies not stated in the

README;
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Experiments

e The experiments were based on the Dnerf’s Trex dataset;

e Focused hyperparameters: grid learning rate (encoder), deformation learning

rate (decoder), iterations, pruning interval;
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Experiments

Default hyperparameters Half iterations
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Experiments

Default hyperparameters Double iterations
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Experiments

Default hyperparameters Double grid learning rate
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Experiments

Half iterations Half iterations half grid Ir
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Experiments

Half iterations Half iterations half pruning interval
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Experiments

Half iterations Half iterations half deformation Ir
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Experiments

Half iterations Half iterations double deformation Ir
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Experiments

Default hyperparameters Half iterations 5x deformation Ir double grid Ir
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The Source Code: overall opinions

e Too much dead code / long methods / unorganized classes, leading to
unnecessarily difficult analysis of source code;

e Hyperparameters declared as .py files, instead of .json or .env;

e Poor repository organization, file contents are not immediate by location and

name alone;
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|dentify area of improvement and possible solution

e Area of Improvement:

o Lack of background points

dynamic and static gaussians

e Possible solution:

o Use 2D Gaussians

Ours 3DGS SuGaR
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Expected improvement over original paper

e 2D Gaussians are able to create a mesh with more depth accuracy.
o This introduces the capability of identifying background points.

e Improve ability to distinguish static and dynamic gaussians.

e Could improve segmentation for directed edition over video.



How we will do it

e Change the tracking of the variance at a each time t to tracking the two
tangential vectors of a 2D Gaussian over a surface.

e Now the transformation of the Gaussians over time is represented as a
translation and rotation.




How we will do it

e Introduce depth consistency and normal distortion loss functions to make sure
the 2D Gaussians give an accurate representation of the scene.

e Create a dynamic mesh that allows to separate the object from the

background.

o This may also allow to have segmentation to edit a certain object in a video for future
applications.
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Question?




