
2D Gaussian Splatting for 
Geometrically Accurate 

Radiance Fields
Reviewer: Esteban Wirth
Archeologist: Esteban Wirth
Hacker: Leonardo Mendonça
PhD Student: Leonardo Mendonça



Reviewer Section
Esteban Wirth



Objectives of the paper

● Create a model that accurately describes the surface of objects in a scene by using 
only pictures of the scene from different angles and minimal restrictions.

● Improve depth consistency from the 3DGS model by introducing explicit ray-splat 
intersections over 2D Gaussians;

● Create these models in reasonable time and accuracy.



Model: 3DGS to 2DGS

The mathematical model is based on the 3D Gaussian Splatting 

The model adapts the 3DGS model by eliminating the third row and column of the 
adapted covariance matrix. 

Unfortunately this is not justified or explained. The reasons why, or if, this works 
are not presented in the paper. 



Model: Multiview reconstruction of 2D Gaussian



Model: Ray-splat intersection

With hx = (-1,0,0,x) and hy = (0,-1,0,y)



Model: Degenerate Solutions and Rasterization

There is an abuse of notation. 

It is unclear what definition of G is being used in each case of the maximum



Training

Where Lc is a color loss-function and is taken from 3DGS

Ld is a depth distortion loss-function

Ln is a normal consistency loss-function



Training



Experiments and Results: DTU Dataset



Experiments and Results: DTU Dataset



Experiments and Results: Tanks and Temples Dataset



Experiments and Results: Depth maps 3DGS vs 2DGS



Conclusions

● The experiments gives positive results as compared to state of the art models.

● Lacks a quantitative experiment to show the insufficiency in modeling 
semi-transparent objects in comparison to other models particularly 3DGS.

● Mathematical model lacks justifications and explanations

● The model is implemented without discussing the specific choice of parameters 
which gives ambiguity as to how they managed to obtain them. 

● The final product works but the math backing it is not well explained.

● It is recommended to re submit after revising the comments detailed above.
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Previous papers

Takes the initial model

readapts it to have 2D

Gaussians

Uses both the model 

and loss function

of this paper as a basis.

 



Previous papers

Takes the concept
of rendering over
a surface with
different ellipses.

Advances the field
by giving a method
of rendering surface
with unknown 
geometry



Next paper



Use of 2DGS in Vidu4D: Rasterization



Use of 2DGS in Vidu4D: Summary
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Gaussian Geometry

Paper:

Code (gaussian_model.py):



Gaussian Probability Distribution

Paper:

Code (gaussian_model.py):



Gaussian Rendering

Paper:

Code (diff_surfel_rasterization/__init__.py):

● Rendering is done with a CUDA-optimized C++ script for faster GPU-based computing



Default Hyperparameters

Code: arguments\__init.py



Densification and Adaptative Control of Gaussians

● The densification strategy is adapted from 3DGS [2], with mostly the same 
densification hyperparameters

● These values are given without justification in [2], and not all are mentioned 
explicitly in [1]

● Between the training iterations densify_from_iter (500) and 
densify_until_iter (15000), the model will periodically split or clone 
certain gaussians, depending on their scale

●  After opacity_reset_interval (3000) epochs, the gaussians with 
opacity lower than opacity_cull (0,05) are removed, while the remaining 
ones have opacity reset to 0,01 (hardcoded)



Densification and Adaptative Control of Gaussians: Cloning

Code (gaussian_model.py):



Densification and Adaptative Control of Gaussians: Splitting

Code (gaussian_model.py):



Densification and Adaptative Control of Gaussians: Opacity Reset

Code (gaussian_model.py):



Hidden Hyperparameters

● Maximum degree of spherical harmonics for anisotropic coloring in each 
gaussian

● Number of iterations to add new spherical harmonics (set to 1000, same as 
3DGS)

● Number of iterations before applying depth distortion regularization (set to 
3000, no explanation)

● Number of iterations before applying normal consistency regularization (set to 
7000, no explanation)

● Minimum and maximum iteration where densification and pruning happen, as 
well as the gradient cutoff for densification and the opacity cutoff for pruning

● Opacity reset value (not only hidden, but hardcoded at 0,01)



Depth distortion regularization

● This regularization loss term seeks to minimize the distance between the 
depth of different gaussians intercepted by the same ray, therefore grouping 
the gaussians near the physical surface of the object

● The paper [2] suggests using weight parameter α=1000 for bounded and 
α=100 for unbounded scenes. 

● However, in the authors’ experiments, the value of α used changes from 
dataset to dataset. In the MipNeRF360 dataset, in particular, this 
regularization is not used at all

● In order to study the effects of depth distortion, we launched simulations of 
the MipNeRF360 Bonsai scene with resolution 390×260, with α=0 (used in 
the tests) and α=1000 (recommended for bounded scenes)



With depth distortion (α=1000)

Simulated Ground truth



With depth distortion (α=1000)

Simulated Ground truth



Without depth distortion (α=0)

Simulated Ground truth



Without depth distortion (α=0)

Simulated Ground truth



Impact of resolution

● After training, we rendered the optimized scene both in the training resolution 
(390×260) and in a higher resolution of 1559×1039

● The quality of the reconstruction, as we shall see, is directly connected to the 
rendering resolution

● Since the results were very similar for the reconstructions with and without the 
depth distortion, we use here α=0, the same value used by the authors in their 
evaluation of the MipNeRF360 dataset



Low resolution (390×260)

Simulated (α=0) Ground truth



High resolution (1559×1039)

Simulated (α=0) Ground truth



High resolution (1559×1039): Simulated, detailed view
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Project 1: 2D Half-Gaussian Splatting

● Attempt scene reconstruction replacing the 2D gaussians used in the paper 
with half-gaussians, following the distribution given below:

● This shape could be more suitable for expressing sharp edges, such as those 
found in many man-made objects

● Expected difficulty: Each gaussian has a non-differentiable line at v=0
● A smoothing function between the half-planes v>0 and v<0 will need to be 

defined (and perhaps trained) in order to allow for backpropagation



Project 1: 2D Half-Gaussian Splatting

● Many structures  are characterized by sharp edges and straight angles
● In theory, the “sharp” half-gaussians could be used to represent such objects 

with fewer points than the full 2d gaussians



Project 2: Mixed 2-3D Gaussian Splatting

● The paper for 2DGS [1] reports difficulties in the reconstruction of translucent 
materials

● However, these materials can be accurately represented by volumetric (3D) 
gaussians, as seen in 3DGS [2] and EWA Splatting [3]

● Therefore, we propose a mixed approach, where 2D and 3D gaussians 
coexist and can be jointly optimized to accurately capture both opaque 
surfaces and translucent volumes



Project 2: Mixed 2-3D Gaussian Splatting

● Challenge: Every point in the initial point cloud should initialize to either a 2D 
or a 3D gaussian. How to decide the dimension of each gaussian 
beforehand?

● One also needs to consider whether each training hyperparameter (e.g. the 
densification threshold) should be the same for 2D and 3D 

● Drawback: By mixing the gaussians, we lose 2DGS’s ability to obtain surface 
normals for free

● As such, it is no longer possible to use normal consistency as a regularization 
strategy
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