2D Gaussian Splatting for
Geometrically Accurate
Radiance Fields

Reviewer: Esteban Wirth
Archeologist: Esteban Wirth
Hacker: Leonardo Mendonca

PhD Student: Leonardo Mendonca

Reviewer Section
Esteban Wirth

Obijectives of the paper

e Create a model that accurately describes the surface of objects in a scene by using
only pictures of the scene from different angles and minimal restrictions.

e Improve depth consistency from the 3DGS model by introducing explicit ray-splat
intersections over 2D Gaussians;

e Create these models in reasonable time and accuracy.

Intersection -0 Gaussian .
2D Gaussian

pane; 4 ¥

Model: 3DGS to 2DGS

The mathematical model is based on the 3D Gaussian Splatting
1 _
G(p) = exp(=5(p—pr) "= (P~ Px)) (1)
> = JWXWTJT

K k-1
c(®) =Y eGP | |(1-a; G2P () 3)
k=1 j=t

The model adapts the 3DGS model by eliminating the third row and column of the
adapted covariance matrix.

Unfortunately this is not justified or explained. The reasons why, or if, this works
are not presented in the paper.

Model: Multiview reconstruction of 2D Gaussian

P(u,v) = pr + sutyu + sytyo = H(u, 0, 1, 1" (4)
where H = = 5
0 0 0 1 0 1)
9 9 Tangent frame (u,v) Image frame (x,y)
g()_ u"+v +++++++++++
u) =€exp|— 2 +++++E++++ 4+
++ + + + + + +
+ + + + + +
+ + + + +
++ + + f + +
++ + + + ++ + 4+
+++++++ A+t
+++++++ A+t
2D Gaussian Splat 2D Gaussian Splat

in object space in image space

Model: Ray-splat intersection

x=lz e)T = WP(u,0) = WH(1,0,1,1)! (7)
hy, = (WH)'hy h, = (WH) h, (8)

hy - (w,0,,1) =hy - (w,0,1,)T =0 (9)
hih; — hyhg hyhy — hyhy

— v(x) =
hih2 —hZh) 00 hihd h2hi

(10)

With hx = (-1,0,0,x) and hy = (0,-1,0,y)

Model: Degenerate Solutions and Rasterization

X

6(x) = max {G(u(x), G(—)} (1)

i—1
cx) =) caiGiu) | [1-aGiux) (12
Jj=1

i=1

There is an abuse of notation.

It is unclear what definition of G is being used in each case of the maximum

Training

.[,d = Za)iwjlzi — Zj| wj = éi(u(x)) l—[l,;i(l — Qj gA](u(X)))
L,j
Vxps X Vyps
— 3 — T N X -
Ln Zi:a),(l n; N) (x,y) VoePs X Vyps|

L=Le+ralyg+pLy

Where Lc is a color loss-function and is taken from 3DGS
Ld is a depth distortion loss-function

Ln is a normal consistency loss-function

Training

Input (A) w/o.NC (B) w/o. DD Full Model

Experiments and Results: DTU Dataset

Table 1. Quantitative comparison on the DTU Dataset [Jensen et al. 2014]. Our 2DGS achieves the highest reconstruction accuracy among other methods and
provides 100X speed up compared to the SDF based baselines.

24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean Time

g NeRF [Mildenhall et al. 2021] 190 1.60 185 0.58 2.28 1.27 147 167 205 1.07 088 253 106 115 0.96 149 >12h
5. VoISDF [Yariv et al. 2021] 1.14 126 0.81 049 125 070 0.72 1.29 118 0.70 0.66 1.08 0.42 0.61 0.55 0.86 >12h
E NeuS [Wang et al. 2021] 1.00 137 0.93 043 1.10 F0.65°10:57| 1.48 F1:099 0.83 FOI52% 1.20 F0:35 0.49" 0.54 0.84 >12h
z 3DGS [Kerbl et al. 2023] 2.14 153 208 1.68 349 221 143 207 222 175 179 255 153 152 1.50 196 11.2m
=, SuGaR [Guédon and Lepetit 2023] 147 133 113 061 225 1.71 115 1.63 162 1.07 0.79 245 098 0.88 0.79 1.33 ~1h
& 2DGS-15k (Ours) 048 092 042 040 1.04 083 083 136 127 0.76 0.72 1.63 040 0.76 0.60 083 55m

2DGS-30k (Ours) 048 091 039 039 1.01 083 081 136 1.27 0.76 0.70 1.40 040 0.76 0.52 080 10.9m

Experiments and Results: DTU Dataset

Table 3. Performance comparison between 2DGS (ours), 3DGS and SuGaR
on the DTU dataset [Jensen et al. 2014]. We report the averaged chamfer
distance, PSNR (training-set view), reconstruction time, and model size.

|CD| PSNRT Time| MB (Storage) |

3DGS [Kerbl et al. 2023]

SuGaR [Guédon and Lepetit 2023]
2DGS-15k (Ours)

2DGS-30k (Ours)

1.96
1.33
0.83
0.80

35.76
34.57
33.42
34.52

112 m
~1h
5.5m
109 m

113
1247

52

52

Scan 24

Scan 105

Fig. 5. Qualitative comparison on the DTU benchmark [Jensen et al. 2014].
Our 2DGS produces detailed and noise-free surfaces.

Experiments and Results: Tanks and Temples Dataset

Table 2. Quantitative results on the Tanks and Temples Dataset [Knapitsch
et al. 2017]. We report the F1 score and training time.

NeuS Geo-Neus Neurlangelo | SuGaR 3DGS Ours
Barn 0.29 0.33 0.70 0.14 0.13 0.41
Caterpillar 0.29 0.26 0.36 0.16 0.08 0.23
Courthouse 0.17 0.12 0.28 0.08 0.09 0.16
Ignatius 0.83 0.72 0.89 0.33 0.04 0.51
Meetingroom | 0.24 0.20 0.32 0.15 0.01 0.17
Truck 0.45 0.45 0.48 0.26 0.19 0.45
Mean 0.38 0.35 0.50 0.19 0.09 0.32
Time >24h >24h >24h >1h 143m 155m

Fig. 10. Qualitative studies for the Tanks and Temples dataset [Knapitsch et al. 2017].

Experiments and Results: Depth maps 3DGS vs 2DGS

scan24 scan37 scan4(

scan65 scan83

scanl06 scan110 scanl14
2DGS scanl06 scan110 scanl14

Conclusions

e The experiments gives positive results as compared to state of the art models.

e Lacks a quantitative experiment to show the insufficiency in modeling
semi-transparent objects in comparison to other models particularly 3DGS.

e Mathematical model lacks justifications and explanations

e The model is implemented without discussing the specific choice of parameters
which gives ambiguity as to how they managed to obtain them.

e The final product works but the math backing it is not well explained.

e |tis recommended to re submit after revising the comments detailed above.

Archeologist Section
Esteban Wirth

Previous papers

Takes the initial model
readapts it to have 2D
Gaussians

Uses both the model

and loss function

of this paper as a basis.

3D Gaussian Splatting
for Real-Time Radiance Field Rendering

SIGGRAPH 2023
(ACM Transactions on Graphics)
Bernhard Kerbl® 12 Georgios Kopanas® 12 Thomas Leimkiihler? ~ George Drettakis!-2
* Denotes equal contribution

Nnria 2Université Cote d'Azur 3MPI Informatik

7, UNI\/ERSITE-- .. TIN) IR
\ brezia— COTEDAZUR -3 3:‘.:?:3:4:&&"&3““

By Paper - 115MB B Paper - 25MB
@ Scenes - 650MB [Results - 7GB = Group Publ. Page

;@ GraphDeco

GRAPHics and Design with hEterogeneous COntent

Previous papers

Takes the concept
of rendering over
a surface with
different ellipses.

Advances the field
by giving a method
of rendering surface
with unknown
geometry

Differentiable Surface Splatting for Point-based Geometry Processing

WANG YIFAN, ETH Zurich, Switzerland

FELICE SERENA, ETH Zurich, Switzerland

SHIHAO WU, ETH Zurich, Switzerland

CENGIZ OZTIRELI, Disney Research Zurich, Switzerland
OLGA SORKINE-HORNUNG, ETH Zurich, Switzerland

Fig. 2. lllustration of forward splatting using EWA [Zwicker et al. 2001].
A point in space pg is rendered as an anisotropic ellipse centered at the
projection point xz.. The final pixel value I at a pixel x in the image (shown
on the right) is the normalized sum of all such ellipses overlapping at x.

Next paper

Vidu4D: Single Generated Video to High-Fidelity 4D
Reconstruction with Dynamic Gaussian Surfels

Yikai Wang*!, Xinzhou Wang*!-%:3, Zilong Chen'-2, Zhengyi Wang' 2, Fuchun Sun', Jun Zhu'!2
!Department of Computer Science and Technology, BNRist Center, Tsinghua University
2ShengShu College of Electronic and Information Engineering, Tongji University
yikaiw@outlook.com, wangxinzhou@tongji.edu.cn, dcszj@tsinghua.edu.cn

Use of 2DGS in Vidu4D: Rasterization

Pi(u) = p; + sptiu + sptio = [RESE pil(w,0,1,1)"

c(X) = Z ci ap Gk (u(X)) (1—a;G;(ux)))
k =1
= o : Vap' x Vyp'

Use of 2DGS in Vidu4D: Summary

Warped-state normal
regularization

Text prompt Video diffusion Field
“an orange cat with —» mode] init

striking blue eyes..."”

Method details of DGS
. Joint training with shared
Warping ek centers and warping
cond. ont and u
= [R‘ Tt] Warped state
N ‘ t, attimet
Refinement _—
AR AS;,
;L Rasterization
_

Hacker Section

Leonardo Mendonca

Gaussian Geometry

Paper:
P(u,v) = py + sutyu +sytyo = H(u, 0, 1, 1)t (4)
sutu soto 0 P RS pr
h H=|[%" olo — E
WHEEE o 0 0 1 0 1)
Code (gaussian_model.py):
def build_covariance_from_scaling_rotation(center, scaling, scaling_modifier, rotation): hbb1

RS = build_scaling_rotation(torch.cat(tensors: [scaling * scaling_modifier, torch.ones_like(
scaling)], dim=-1), rotation).permute(0,2,1)
trans = torch.zeros((center.shape[0], 4, 4), dtype=torch.float, device="cuda")

trans[:;:3,53] = RS
trans[:, 3,:3] = center
trans{:y 3, ‘3] = 1

return trans

Gaussian Probability Distribution

Paper:

2 2
G(u) = exp [-——— ©)

Code (gaussian_model.py):

self.scaling_activation = torch.exp

self.scaling_inverse_activation = torch.log

self.covariance_activation =

build_covariance_from_scaling_rotation

Gaussian Rendering

Paper:
h2h% — hih? hihl —hlh? : = x
W)= M= pEmen 100 s ;ci @ Gi(u(x) gu - Gi(ux) (12)
6(x) = max {G(u(x)). G (—)] (1)

Code (diff_surfel rasterization/ __init__.py):

num_rendered, color, depth, radii, geomBuffer, binningBuffer, imgBuffer = _C.r‘aster‘ize_gauslsians(*ar‘gs)

e Rendering is done with a CUDA-optimized C++ script for faster GPU-based computing

94

Default Hyperparameters

class OptimizationParams(ParamGroup):

def __init__(self, parser):

self.iterations = 30_000

self.position_1lr_init = 0.

2 usages hbb1

hbb1

00016

self.position_1lr_final = 0.0000016

self.position_1lr_delay_mult =
self.position_1lr_max_steps

self.feature_lr = 0.0025
self.opacity_1lr = 0.05
self.scaling_1r = 0.005
self.rotation_1r = 0.001

self.percent_dense = 0.01
self.lambda_dssim = 0.2
self.lambda_dist = 0.0
self.lambda_normal = 0.05

self.opacity_cull = 0.05

self.densification_interval
self.opacity_reset_interval
500

self.densify_from_iter =
self.densify_until_iter =

¥ self.densify_grad_threshold =

super().__init__(parser,

0.01
= 30_000

100
3000

15_000
0.0002
name: "Optimization Parameters")

Code: arguments\ _init.py

Densification and Adaptative Control of Gaussians

The densification strategy is adapted from 3DGS [2], with mostly the same
densification hyperparameters

These values are given without justification in [2], and not all are mentioned
explicitly in [1]

Between the training iterations densify from iter (500)and

densify until iter (15000), the model will periodically split or clone
certain gaussians, depending on their scale

After opacity reset interval (3000)epochs, the gaussians with
opacity lower than opacity cull (0,05) are removed, while the remaining
ones have opacity reset to 0,01 (hardcoded)

Densification and Adaptative Control of Gaussians: Cloning

Code (gaussian_model.py):

374 def hensify_and_clone(self, grads, grad_threshold, scene_extent): 1usage hbb1

Extract points that satisfy the gradient condition
selected_pts_mask = torch.where(torch.norm(grads, dim=-1) >= grad_threshold, True, False)
selected_pts_mask = torch.logical_and(selected_pts_mask,

torch.max(self.get_scaling, dim=1).values <=

self.percent_dense*xscene_extent)

new_xyz = self._xyz[selected_pts_mask]

new_features_dc = self._features_dc[selected_pts_mask]
new_features_rest = self._features_rest[selected_pts_mask]
new_opacities = self._opacity[selected_pts_mask]
new_scaling = self._scaling[selected_pts_mask]
new_rotation = self._rotation[selected_pts_mask]

self.densification_postfix(new_xyz, new_features_dc, new_features_rest, new_opacities,
new_scaling, new_rotation)

Densification and Adaptative Control of Gaussians: Splitting

Code (gaussian_model.py):

def densify_and_split(self, grads, grad_threshold, scene_extent, N=2): 1usage hbb1
n_init_points = self.get_xyz.shape[0]

Extract points that satisfy the gradient condition

padded_grad = torch.zeros((n_init_points), device="cuda")

padded_grad[:grads.shape[0]] = grads.squeeze()

selected_pts_mask = torch.where(padded_grad >= grad_threshold, True, False)

selected_pts_mask = torch.logical_and(selected_pts_mask,

torch.max(self.get_scaling, dim=1).values > self.percent_dense*scene_extentﬂ

stds = self.get_scaling[selected_pts_mask].repeat(N,1)

stds = torch.cat(tensors: [stds, O * torch.ones_like(stds[:,:1])], dim=-1)

means = torch.zeros_like(stds)

samples = torch.normal(mean=means, std=stds)

rots = build_rotation(self._rotation[selected_pts_mask]).repeat(N,1,1)

new_xyz = torch.bmm(rots, samples.unsqueeze(-1)).squeeze(-1) + self.get_xyz[selected_pts_mask].repeat(N, 1)
new_scaling = self.scaling_inverse_activation(self.get_scaling[selected_pts_mask].repeat(N,1) / (0.8%N))
new_rotation = self._rotation[selected_pts_mask].repeat(N,1)

new_features_dc = self._features_dc[selected_pts_mask].repeat(N,1,1)

new_features_rest = self._features_rest[selected_pts_mask].repeat(N,1,1)

new_opacity = self._opacity[selected_pts_mask].repeat(N,1)

Densification and Adaptative Control of Gaussians: Opacity Reset

Code (gaussian_model.py):

209

def reset_opacity(self): 1usage hbb1

opacities_new = self.inverse_opacity_activation(torch.min(
self.get_opacity, torch.ones_like(self.get_opacity)*0.01))

optimizable_tensors = self.replace_tensor_to_optimizer(
opacities_new, name: "opacity")

self._opacity = optimizable_tensors["opacity"]

Hidden Hyperparameters

e Maximum degree of spherical harmonics for anisotropic coloring in each
gaussian

e Number of iterations to add new spherical harmonics (set to 1000, same as
3DGS)

e Number of iterations before applying depth distortion regularization (set to
3000, no explanation)

e Number of iterations before applying normal consistency regularization (set to
7000, no explanation)

e Minimum and maximum iteration where densification and pruning happen, as
well as the gradient cutoff for densification and the opacity cutoff for pruning

e Qpacity reset value (not only hidden, but hardcoded at 0,01)

Depth distortion regularization

e This regularization loss term seeks to minimize the distance between the
depth of different gaussians intercepted by the same ray, therefore grouping
the gaussians near the physical surface of the object

e The paper [2] suggests using weight parameter a=7000 for bounded and
a=100 for unbounded scenes.

e However, in the authors’ experiments, the value of a used changes from
dataset to dataset. In the MipNeRF360 dataset, in particular, this
regularization is not used at all

e In order to study the effects of depth distortion, we launched simulations of
the MipNeRF360 Bonsai scene with resolution 390%x260, with a=0 (used in
the tests) and a=7000 (recommended for bounded scenes)

With depth distortion (a=7000)

Simulated Ground truth

With depth distortion (a=7000)

Simulated Ground truth

Without depth distortion (a=0)

Simulated Ground truth

Without depth distortion (a=0)

Simulated Ground truth

Impact of resolution

e After training, we rendered the optimized scene both in the training resolution
(390%260) and in a higher resolution of 1559x1039

e The quality of the reconstruction, as we shall see, is directly connected to the
rendering resolution

e Since the results were very similar for the reconstructions with and without the
depth distortion, we use here a=0, the same value used by the authors in their
evaluation of the MipNeRF360 dataset

Low resolution (390x260)

Simulated (a=0) | Ground truth

High resolution (1559%1039)

Simulated (a=0) | Ground truth

PhD Student Section

Leonardo Mendonca

Project 1: 2D Half-Gaussian Splatting

e Attempt scene reconstruction replacing the 2D gaussians used in the paper
with half-gaussians, following the distribution given below:

e
G, v} = 2e= =2 ,ifv>0
’ 0,ifv<0

e This shape could be more suitable for expressing sharp edges, such as those
found in many man-made objects
Expected difficulty: Each gaussian has a non-differentiable line at v=0

e A smoothing function between the half-planes v>0 and v<0 will need to be
defined (and perhaps trained) in order to allow for backpropagation

Project 1: 2D Half-Gaussian Splatting

e Many structures are characterized by sharp edges and straight angles
e Intheory, the “sharp” half-gaussians could be used to represent such objects
with fewer points than the full 2d gaussians

Project 2: Mixed 2-3D Gaussian Splatting

e The paper for 2DGS [1] reports difficulties in the reconstruction of translucent
materials

e However, these materials can be accurately represented by volumetric (3D)
gaussians, as seen in 3DGS [2] and EWA Splatting [3]

e Therefore, we propose a mixed approach, where 2D and 3D gaussians
coexist and can be jointly optimized to accurately capture both opaque
surfaces and translucent volumes

Project 2: Mixed 2-3D Gaussian Splatting

e Challenge: Every point in the initial point cloud should initialize to either a 2D
or a 3D gaussian. How to decide the dimension of each gaussian
beforehand?

e One also needs to consider whether each training hyperparameter (e.g. the
densification threshold) should be the same for 2D and 3D

e Drawback: By mixing the gaussians, we lose 2DGS'’s ability to obtain surface
normals for free

e As such, itis no longer possible to use normal consistency as a regularization
strategy

Bibliography

1. Huang, B., Yu, Z., Chen, A., Geiger, A. and Gao, S., 2024, July. 2d gaussian
splatting for geometrically accurate radiance fields. In ACM SIGGRAPH 2024
Conference Papers (pp. 1-11).

2. Kerbl, B., Kopanas, G., Leimkuhler, T. and Drettakis, G., 2023. 3D Gaussian
Splatting for Real-Time Radiance Field Rendering. ACM Trans. Graph., 42(4),
pp.139-1.

3. Zwicker, M., Pfister, H., Van Baar, J. and Gross, M., 2002. EWA splatting.
IEEE Transactions on Visualization and Computer Graphics, 8(3),
pp.223-238.

