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1. Reviewer

1.1. Summary

Recently, gaussian splatting has emerged as a powerful,
compact 3D representation of 3D scenes from multiple
views ([2]). This technique, despite useful, suffers from
heavy overfitting when trained on sparse views. This prob-
lem has been tackled for other representations such as
NeRFs ([8, 11]), but did not have any advancement for
gaussian representations. In that sense, CoherentGS: Sparse
Novel View Synthesis with Coherent 3D Gaussians (Coher-
ent GS) aims to mitigate the artifacts generated by sparse
views by introducing a coherence during training. Specif-
ically, they initialize isometric gaussians using depth maps
and enforce constraints on the movement and opacity of the
gaussians considering the optical flow between images and
correspondences across views. This mitigates the heavily
anisotropic behavior of gaussians during training.

Based on the sparse views (2 ∼ 4 images), CoherentGS
uses an already trained FlowFormer [] and Depth Anything
[] to obtain the flows and monocular depth maps of each
view. This last one is used to construct segmentation maps
M via depth quantization. Now, to initialize the gaussians
determined by the positions x, colors c and covariance ma-
trix Σ, we consider the coherence of a single view and
multi-views. For a single view i, an isometric gaussian is
initialized for each pixel p at a depth from the camera de-
termined by the monocular depth Dm

i . At first, they initial-
ize its rotation matrix to identity, and consider the radius as
r = f ·Dinit

i /H where f is the focal lenght of the ith image
and H is the image’s height; this guarantees the gaussian
splat covers the pixel p.

For a multi-view, they consider the correspondences be-
tween the depth masks of different images Mi↔j . At this
stage, closeness is enforced between gaussians associated
to pixels p and q of different images i and j that project to
the same 3D point. This is done via optimization using the
loss term

s∗, o∗= arg min
s,o

∑
(i,j)

∑
p

∣∣∣∣∣
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g(si ·Dm

i [p] + oi, p)−

g(sj ·Dm
j [q] + oj , q)

)∣∣∣∣∣
∣∣∣∣∣
1

where s, o are the scales and offsets of all (isometric) gaus-
sians and the function g(d, p) projects the pixel p to a
depth d in the space. Then, they are mainly adjusting the
scales and offsets to reduce the distance between gaussians
coming from pixels projected from the same spatial point.
This way, the initialization of the gaussians is given by
Dinit = s ·Dmono + o.

This gives an structured initialization of gaussians. Then,
they train the gaussians to fit the scene maintaining coher-
ence. First, the positions vary only along the ray via a resid-
ual depth ∆Di that is computed using a decoder. The scale
is also implicitly updated by the formula of the radius r.
This means that the training of position and scale of the
gaussians is done implicitly by optimizing the parameters
of the decoder. The opacity is trained in a similar fashion.
Additionally, to guarantee smoothness in the geometry, they
use regularization terms based on total variation,

Lmulti = (1−λs)
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(where R refers to the rendered depth in a pixel p) and op-
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tical flow,

Lflow =
∑
(i,j)

∑
p

∣∣∣∣∣
∣∣∣∣∣Mi↔j⊙

(
g(Di[p], p)−g(Dj [q], q)

)∣∣∣∣∣
∣∣∣∣∣
1

.

The loss term Lmulti is confusing and simplifies the no-
tation (such as suppressing the summations), which leads
to confusion. Besides, it is not clear why the second sum-
mand is necessary since the notation S was not clarified. On
the other hand, it is easy to see what is the term Lflow do-
ing. It ensures that the depth of pixels projected to the space
that are in the same segmentation mask is approximately the
same.

1.2. Strenghts

• The paper is very well written, with good illustrative fig-
ures to explain their method.

• The experiments were complete.
• The idea of using generative models to inpaint the empty

regions left by occlusion was an interesting.

1.3. Weaknesses

• The decoder structure could have been better described to
understand the extra parameters used.

• Some notation was not clearly stated in the paper.
• A previous reference of the topic was ignored ([9]). How-

ever, since it was a master dissertation, it is understand-
able to have omitted it accidentally.

1.4. Evaluation

I consider the method to be clear and innovative, with
mostly good explanations and organized structure. Addi-
tionally, the points to improve are mostly to further improve
the work, and do not raise big concerns. Furthermore, using
generative models to complete the scene is an interesting
direction of work. Considering the previous points, I would
accept this work with a rating of 5.

2. Archaeologist

The present work is a new chapter in the history of NeRF-
related works that aim to reconstruct scenes with a very
limited dataset and high quality. Being part of an already
existing history proves this is a challenging problem with
awe-inspiring solutions that breed new iterations. The lack
of variety in its training dataset can lead models to overfit
their results, becoming overly competent in displaying the

scene on known positions and directions but inferring unus-
able data between the images, which is the most interesting
part of such reconstructions.

As part of a whole, CoherentGS itself cites lots of other
works in its Related Works section. Since that 3D Gaus-
sian Splatting is at best one year old at the time of publish-
ing, it is reasonable to expect that most previous work will
not work with 3DGS, but focus on the challenge of recon-
structing such radiance fields with NeRFs. Still, most works
features at this section are mentioned only as a means to il-
lustrate the problem better, and serve as an inspiration for
better regularizing training conditions with little data. The
section explicitly mentions:

• RegNeRF: Regularizing Neural Radiance Fields for View
Synthesis from Sparse Inputs, which samples unobserved
views (predicted using a trained normalizing flow model,
maximizing predicted log-likelihood) and rendering un-
seen patches for better regularizing geometry during
training. This work also proposes an annealing strategy
for controlling ray density near the ray start, which can
produce undesirable artifacts [5];

• Depth-supervised NeRF: Fewer Views and Faster Train-
ing for Free, or DS-NeRF for short, uses SfM sparse
points used in training as a means to supervise depth train-
ing for each key point and color training for each pixel on
image, producing better reconstructions out of few views
[1];

• ViP-NeRF: Visibility Prior for Sparse Input Neural Ra-
diance Fields, which extracts visibility priors from plane
sweep volumes to use as dense supervision at no extra
pre-training cost, differently from other NeRF-based so-
lutions aiming at reconstructing scenes from sparse views
[7];

• FreeNeRF: Improving Few-shot Neural Rendering with
Free Frequency Regularization, which focuses efforts into
regularizing frequency in NeRF’s inputs and penalizing
near-camera fields, since that high frequencies are a huge
problem while reconstructing NeRF with sparse views
[11];

• FlipNeRF: Flipped Reflection Rays for Few-shot Novel
View Synthesis, which reflects sampled rays as a cheap
way to generate extra views for better constraining the
training process. Extra rays are reflected according to the
normal vector whenever the angle between the original
ray and the normal does not exceed ninety degrees [6];

• SparseNeRF: Distilling Depth Ranking for Few-shot
Novel View Synthesis, which exploits depth priors from
other sources, such as pre-trained depth models and
coarse depth models from customer-level sensors, to
serve as supervision for depth training, given constraints
to account for inaccurate depth maps [8].
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The aforementioned works propose different strategies
for better regularization for NeRF optimization. The future
3D Gaussian Splatting works that came afterwards inherit
this spirit. Since 3DGS is also interested in reconstructing
real-life scenes, contemporary works leverage advantages
to reconstruct sparsely sampled scenes better through some
way to enhance splat regularization.

The first known 3DGS work to tackle this specific and
challenging scenario is SparseGS, first published in late
2023, which uses a custom Loss function that leverages
depth samples for supervising splat position together with
a custom operator for pruning sparse points [9]. Still it
is recent enough to be considered contemporary to other
techniques published around the same time frame as Co-
herentGS, such is the case of FSGS and DNGaussian.

FSGS (or Few-Shot Gaussian Splatting), published on
ECCV 2024 as ”Real-Time Few-Shot View Synthesis us-
ing Gaussian Splatting”, runs a method dubbed Gaussian
Unpooling that iteratively redistributes Gaussians while us-
ing monocular depth priors in order to optimize splat po-
sition during training better while filling vacant areas [13].
DNGaussian, on the other hand, published on CVPR 2024
as ”DNGaussian: Optimizing Sparse-View 3D Gaussian
Radiance Fields”, uses a two-step depth regularization pro-
cess to constrain 3D geometry without compromising color
details, plus a two-step depth normalization procedure to
enhance reconstruction through normalizing depth patches
and refocus small depth changes [3].

Since CoherentGS is very new, published only a couple
of months ago, no published works have been developed
based on its techniques. However, some works acknowl-
edge CoherentGS as a valid work worthy of citation, al-
beit in the form of another work that tackles the problem of
properly reconstructing a radiance field of a sparsely cap-
tured scene. At the time of writing, CoherentGS was cited
at least thirteen times, according to Google Scholar. From
those citations, at least three of them were published in peer-
reviewed portals, such is the case of ”GeoRGS: Geometric
Regularization for Real-Time Novel View Synthesis from
Sparse Inputs” on the IEEE Transactions on Circuits and
Systems for Video Technology journal [4], ”FewViewGS:
Gaussian Splatting with Few View Matching and Multi-
stage Training” accepted on NeurIPS 2024 [12], and last
but not least the recently published ”GaussianObject: High-
Quality 3D Object Reconstruction from Four Views with
Gaussian Splatting” on ACM Transactions on Graphics Vol-
ume 43, Issue 6 from December 2024 [10].

3. Hacker

The code structure is very similar to the 3DGS [2], the
main difference is related to the Gaussians representation.
Since CoherentGS introduces coherency based on depth,
additional scripts are included in the scene folder, such as
depth-layering.py and decoder.py. This latter is responsible
for scaling the Gaussian shapes, in accordance to the initial
depth, vertical focal length and the input image height.

3.1. Code reproducibility

Initially, the code was not published, so we had to contact
the authors who provided it to us, with the condition of aca-
demic use. In this available version, a code manipulation
was required inside the decoder file, in the function called
forward, the necessary change was the insertion of a vari-
able cast. Despite that, the code has easy reproducibility and
the README is also simple and clear. Three demo tests
were performed to attest to this, with the datasets: flower,
room and horns. Each test was run in about 30 minutes
and generates as output three videos with the normal map,
depth map, and 3D reconstruction, as seen in the Figure 1.
The flower demo results highlights the characteristics of the
method of not reconstructing unseen spaces, avoiding arti-
facts, the authors suggest do an inpainting with a diffusion
model to cover the blank regions. This inpainting was not
tested here.

Figure 1. Flower demo (to left to right: normal map, depth map
and 3D reconstruction).

3.2. Experiments

Since CoherentGS intends to perform a 3D reconstruction
with sparse input images, around 3 or 4, the position and
number of cameras is a decisive factor for a good result.
Considering that, the first experiment proposed was to re-
construct the flower scene with 4 cameras instead 3 (de-
fault). As result, the new scene present less blank spaces, as
shown in Figure 2. Nevertheless, the time spent in running
step changed from 32 to 47 minutes.

The second experiment was to change the number of in-
teractions from 20 thousand (default) to 10 thousand, both
with 4 cameras. Although the 3D reconstruction with fewer
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Figure 2. 3D reconstruction with: 3 cameras (on the left) and 4
cameras (on the right).

Figure 3. 3D reconstruction with: 20k interactions (on the left)
and 10k interactions (on the right).

Figure 4. 3D reconstruction with: 3 cameras and 20k interactions
(on the left) and 4 cameras and 10k interactions (on the right).

interactions has a blurred appearance (Figure 3), the time
savings in execution are substantial, from 47 to 12 minutes.

Aiming to obtain an optimized result, a test was carried
out changing the number of cameras and interactions. The
parameters suggested for optimization were: 4 cameras and
10 thousand interactions. Comparing this with the default
(3 cameras and 20 thousand interactions) is possible to note
that the proposed set of parameters present a better result
both in appearance and in time (from 32 to 15 minutes).

The last experiment was to add a scale factor to calculate
the radius of the Gaussians, the factor tested was 4. The
Figure 5 highlights the break in coherence generated by this
change, resulting in a very blurred image.

In conclusion, these tests showed that the camera is a key
parameter to obtain a great result, while interaction can be
reduced so that a faster result can be produced.

Figure 5. 3D reconstruction with 4 cameras and 10k interactions
and scale factor: 1 (on the left) and 4 (on the right).

4. PhD Student

After analyzing the CoherentGS papers and discussions, we
propose four research directions for future work in neural
scene reconstruction.

The first direction focuses on Naval and Submarine En-
gineering Applications. There is significant potential to
adapt CoherentGS for underwater imaging scenarios where
obtaining multiple views is inherently challenging. This re-
search would develop specialized techniques for creating
3D models of submerged equipment and structures using
limited imagery from ROVs and divers. A key challenge
would be handling water turbidity, refraction, and scattering
effects while maintaining coherent reconstruction. Success
in this domain could enable automated monitoring of ma-
rine ecosystems and more efficient underwater infrastruc-
ture inspection.

The second area explores Historical Monument Recon-
struction. This work would adapt CoherentGS for recon-
struction from sparse historical photographs that often have
varying quality and unknown camera parameters. The re-
search would need to develop techniques to handle incom-
plete and degraded image data while preserving impor-
tant architectural details. Methods for combining historical
and modern imagery in a coherent reconstruction pipeline
would be particularly valuable. This research topic could
improve our ability to digitally preserve and restore cultural
heritage sites.

The third direction investigates Adaptive Multi-
Resolution Gaussian Distribution. This research would
develop a dynamic approach to Gaussian placement based
on scene complexity, using denser distributions in areas
requiring great detail (like complex geometry and fine
textures) while implementing sparse distributions in more
straightforward regions (such as flat surfaces and uniform
textures). The research would create metrics to automat-
ically determine optimal Gaussian density based on local
scene properties and design efficient optimization strategies
for variable-density Gaussian fields. This approach could
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reduce computation time while maintaining or improving
quality of the CoherentGS.

The fourth area focuses on Enhanced Transparent Object
Handling through specialized regularization. This research
would extend CoherentGS to better handle transparent sur-
faces by developing methods to model both reflected and
transmitted light paths. It would create physically based
constraints for glass, water, and other transparent materials,
enabling the reconstruction of scenes with multiple trans-
parent layers. The work would involve designing loss func-
tions that encourage physically plausible transparent ob-
ject reconstruction while incorporating principles from light
transport theory to handle complex transparent geometries.

These proposals strengthen CoherentGS by enhancing
efficiency with adaptive resolution and improving real-
world use with better transparency handling. The under-
water and historical reconstruction applications leverage the
method’s ability to work with sparse views while pushing it
into important practical domains. All four directions focus
on coherent reconstruction while introducing novel techni-
cal contributions. They balance practical applications and
fundamental improvements to the approach. Advances in
these areas would significantly advance state-of-the-art neu-
ral scene reconstruction while opening new application do-
mains for the technology.

5. Conclusion

CoherentGS is a method that seeks to reduce the impact
of sparse views on gaussian representation of scenes, as
done for other scene representations such as NeRFs. It in-
troduces coherence during training, minimizing the over-
fitting of gaussians. Such work may offer a good option
for few views, however, as commented previously, it slows
down considerably when dense views are available, making
it unappropriated for big scenes. In general, it is an useful
method in the scope it is defined, and may serve as inspi-
ration to develop further research in the line of 3D scene
representation with sparse views.
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