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1. Review

The paper ”4D Gaussian Splatting for Real-Time Dynamic
Scene Rendering” presents an innovative framework that
combines spatial and temporal modeling for rendering dy-
namic scenes. It builds on foundational Gaussian splat-
ting techniques, introducing key advancements that improve
performance, accuracy, and efficiency.

1.1. Summary

• Problem Addressed: The challenge of rendering dy-
namic scenes with high visual fidelity, low latency, and
efficient memory usage in real-time.

• Motivation: Existing methods, including 3D Gaussian
Splatting, struggle to address temporal dynamics and
adapt to high-motion or deformable environments.

• Method Summary:
– HexPlane Architecture: Introduces multi-resolution

voxel planes that encode spatial and temporal data
compactly, balancing computational performance and
detail fidelity.

– Deformation Decoders: Multi-head decoders adjust
Gaussian attributes dynamically to accommodate mo-
tion and deformations.

– Differentiable Splatting: Implements splatting tech-
niques that enhance rendering quality while reducing
artifacts.

– Initialization via SfM: Employs Structure from Mo-
tion techniques to generate consistent initial represen-
tations for subsequent dynamic modeling.

• List of Contributions:
– Unified spatio-temporal modeling framework.
– Improved memory efficiency and adaptability to dy-

namic environments.
– Extensive validation on datasets like D-NeRF and Hy-

perNeRF, achieving state-of-the-art results.
– Introduction of HexPlane as a core innovation for real-

time Gaussian splatting.

The methodology is thorough, though some areas, such
as the mathematical rationale for deformation adjustments
and the selection of loss functions, could benefit from fur-
ther elaboration. Visual comparisons and extended experi-
mental results would also enhance clarity.

1.2. Positive Points

• Demonstrates innovative integration of spatio-temporal
modeling using HexPlane.

• Achieves superior rendering quality with reduced latency
and memory usage.

• Provides practical applications for VR, simulations, and
generative modeling.

• Extends foundational Gaussian splatting approaches, cre-
ating new research opportunities.

Figure 1. Overview of the Spatial-Temporal Structure Encoder
and Multi-head Gaussian Deformation Decoder pipeline. The fig-
ure shows how 3D Gaussians are adjusted dynamically to handle
position, rotation, and scaling across spatial and temporal dimen-
sions.
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1.3. Negative Points

• Limited experimental evaluation on large-scale and di-
verse datasets.

• Lack of detailed explanation for certain architectural de-
sign choices.

• Potential reproducibility challenges due to limited docu-
mentation of parameters and dependencies.

1.4. Evaluation

Score: 4.7/5 Recommendation: Accept with minor revi-
sions. The paper makes transformative contributions but
requires additional experiments and elaboration on specific
methodological details to maximize its impact.

2. Archaeological Context

2.1. Historical Context

The paper ”4D Gaussian Splatting for Real-Time Dynamic
Scene Rendering” builds on the foundation of 3D Gaussian
Splatting, addressing its limitations by integrating temporal
dynamics. Central to this work is the HexPlane architec-
ture, which employs multi-resolution voxel planes to en-
code Gaussian attributes such as position, size, and orien-
tation across spatial and temporal dimensions (x, y, z, t).
HexPlane’s design enables efficient representation and real-
time adaptability, addressing challenges like memory over-
head and motion complexity. [1] [Figure 2]

When compared to K-Planes, HexPlane provides signif-
icant advancements. K-Planes utilize bilinear interpolation
across multiple 2D planes to approximate 3D structures, as
depicted in the attached image. However, K-Planes strug-
gle with temporal dynamics and finer-grained spatial resolu-
tion due to their reliance on lower-dimensional feature inter-
polation. HexPlane improves on this by integrating multi-
resolution voxel grids that account for both spatial and tem-
poral variations, allowing precise deformation handling and
smoother transitions over time.

The table of related works highlights these advance-
ments by quantitatively comparing HexPlane’s performance
in terms of memory efficiency, computational cost, and vi-
sual fidelity. Unlike earlier methods that focus on static or
quasi-static scenes, HexPlane achieves real-time adaptabil-
ity and superior reconstruction quality for dynamic scenar-
ios.

2.2. Current Works and Future Connections

The innovations in this paper have inspired various applica-
tions and future directions:

• Medical Applications: Extensions of the framework
support surgical simulations, leveraging HexPlane for
real-time organ deformation modeling. This improves the
accuracy of training environments for medical profession-
als. [4]

• Text-to-4D Synthesis: Combines HexPlane with genera-
tive text-based models to create dynamic virtual environ-
ments, advancing interactive storytelling and immersive
VR. [3]

2.3. Reference Adequacy

The paper cites key foundational works, such as 3D Gaus-
sian Splatting and differentiable splatting techniques, but
could benefit from additional references:

• Research on neural representations for deformable ob-
jects.

• Studies on distributed 4D rendering techniques for col-
laborative systems.

• Comparative analyses of voxel-based encoding strategies
for dynamic scenes.

The table of related works could be expanded to pro-
vide quantitative comparisons, such as rendering times and
memory usage, further illustrating HexPlane’s advantages
over alternative architectures.

2.4. Conclusion

The paper represents a significant advancement in Gaussian
splatting techniques, addressing temporal dynamics through
the innovative HexPlane architecture. Its applications span
medical simulations, VR, and generative modeling, empha-
sizing its transformative potential. With extended validation
on diverse datasets and detailed exploration of HexPlane’s
design choices, the framework could set a new standard in
dynamic scene rendering.

3. Hacker

3.1. Source Code Evaluation

While 4D Gaussians source code implements some the-
oretical notions, it suffers from poor organization and is
hardly useful. While working, this code is tough to modify
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Figure 2. Overview of K-Planes architecture. The figure illustrates
multiscale bilinear interpolation across 2D spatial and space-time
planes, combined with feature decoding and volumetric rendering
for ray-based color prediction.

for any other experiment or dataset due to the lack of com-
ments and documentation and because most of the hyper-
parameters are hardcoded. Even the README itself does
not give sufficient information to set up the datasets for Hy-
pernerf and hence limits reproducibility in Colab notebooks
and presents a major barrier to end researchers. The code
connects theory with practice by means of the following
elements. It makes use of spherical harmonics for color
space mapping, not discussed in the paper, for smooth di-
rectional lighting. Time is included in the framework of
3D Gaussian Splatting to realize temporal pre-filtering for
motion coherence with reduced aliasing. Secondly, hexago-
nal plane sampling replaces a full 4D grid, reducing spatial
complexity from O(n4) to O(n2) for increased scalability
and robustness during upscale.

With all those strengths, the code also has important de-
sign weaknesses: dead code and commented-out code in
the repository, not modularizing encoders and decoders into
their respective classes as per object-oriented programming,
and a messy repository that makes it difficult to navigate. In
the process of cleaning up the code base, the code also needs
reorganization to be more user-friendly and reproducible.

3.2. Experiments and Reproducibility Testing

Authors performed experiments on DNerf’s Trex dataset
consisting of 2 NVIDIA T4 GPUs with 16GB GDDR6
each. The default hyperparameters taken from the paper
represent grid learning rate (0.0016 initial, 0.000016 final),
deformation learning rate (0.00016 initial, 0.000016 final),
total number of iterations - 20,000, and the period to prune
8,000 iterations. The reason behind choosing DNerf is there
is little detail on how Hypernerf datasets are collected, with-
out which they are impracticable for use. This is further re-
duced by this limitation and the necessity of manual edits in
data loaders for reproducibility in new datasets.

The method with default hyperparameters balances tem-
poral stability, minimal aliasing, and smooth transitions
best. Reducing iterations degraded the temporal coherence

and increased aliasing, while doubling the grid learning
rate accelerated convergence but caused flickering in high-
frequency regions. Halving the learning rates of the defor-
mations or pruning intervals led to sharper details with the
introduction of some artifacts, while doubling the deforma-
tion rates resulted in improved temporal coherence at the
cost of lost fine details. Very aggressive changes, such as
a 5× deformation learning rate and a doubled grid learning
rate, caused instability and poor visual quality. Reducing it-
erations and grid learning rates by half resulted in balanced
coherence at the expense of increased aliasing in textures.
These results indicate that the method is sensitive to its hy-
perparameters and therefore careful tuning is required in or-
der to achieve the best performance.

3.3. Conclusion

While 4D Gaussians bridges theory and implementation ef-
fectively, poor code design, insufficient documentation, and
hardcoded configurations hinder reproducibility and adapt-
ability. The experiments confirmed strong performance
with default settings but revealed high sensitivity to param-
eter changes. Refactoring the codebase, improving docu-
mentation, and externalizing configurations are necessary
to make the method more accessible for researchers.

4. PhD project

Even though the current model is a steep improvement over
previous models and has very good results there are a few
areas that could be improved. Particularly, there is a prob-
lem for identifying, and therefore modeling, static gaussians
vs dynamic gaussians. Very much related to this limitation
there is also a lacking of background points in teh devel-
opment of the scene. In order to address this problem we
could try to use 2 dimensional gaussians.

By using 2DGS [2] we can recreate a mesh and have
background points being developed which tackles the lack
of background points problem we just mentioned. Fur-
thermore by introducing a reasonable assumption of back-
ground points being more likely to remain static while ob-
ject points being more likely to be dynamic we can also
improve our capability to detect which gaussians should be
static and which should be dynamic.

Another improvement that is provided by using 2DGS is
that we have a better assessment of depth as discussed in
[2]. More over, we can create a depth mesh that in essence
identifies in what section of the scene there are objects. By
having this mesh vary over time it creates a better method to
identify where in the scene there is movement and where in
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the scene there is static behavior. This improves the prob-
lems that we identified at the beginning of the section.

In order to be able to do this we would have to include
depth and normal consistency loss functions as are intro-
duced in [2]. This would also mean that rather than track-
ing the variance of the gaussians through time; we would
instead track the two vectors that correspond to highest and
least variation of the gaussian. In particular we need to
create time dependent rotation and translation matrices that
keep a consistent representation of the scene from different
view points.

5. Conclusions

The paper ”4D Gaussian Splatting for Real-Time Dynamic
Scene Rendering” represents a significant advancement in
Gaussian Splatting techniques, particularly through the in-
tegration of spatio-temporal modeling via the innovative
HexPlane architecture. The primary contributions, such as
the unified spatio-temporal framework, enhanced memory
efficiency, and adaptability to dynamic environments, posi-
tion this work at the forefront of real-time dynamic scene
rendering.

The presented results demonstrate superior rendering
quality with reduced latency and memory usage, validating
the method’s effectiveness on datasets like D-NeRF and Hy-
perNeRF. Furthermore, practical applications in areas such
as virtual reality, medical simulations, and generative mod-
eling highlight the transformative potential of this approach.

However, the study has certain limitations that could be
addressed in future work. The experimental evaluation was
confined to specific datasets, and a more comprehensive
analysis across diverse scenarios would reinforce the ro-
bustness of the conclusions. Additionally, the lack of de-
tailed explanations for certain architectural aspects and the
sensitivity to hyperparameters indicate a need for more thor-
ough documentation and the development of more robust
parameterization strategies to facilitate reproducibility and
adaptability of the method.

Based on the analyses conducted, the following alterna-
tive titles are suggested for the paper:

• ”HexPlane: A Spatio-Temporal Approach for Real-Time
Dynamic Scene Rendering with 4D Gaussian Splatting”

• ”Real-Time Dynamic Scene Rendering Using 4D Gaus-
sian Splatting: Integrating Spatio-Temporal Modeling
with HexPlane Architecture”

• ”Advancements in Dynamic Scene Rendering: 4D Gaus-
sian Splatting and the Innovative HexPlane Architecture”

Additionally, a missing result that could enrich the paper
is the inclusion of a comparative evaluation on a more di-
verse and larger-scale dataset. This would allow for assess-
ing the generalizability of the method and its applicability
across different contexts, thereby strengthening the argu-
ment for HexPlane’s superiority over existing approaches.
Incorporating additional metrics, such as performance in
highly dynamic environments or under significant lighting
variations, would also provide a more comprehensive un-
derstanding of the methodology’s capabilities and limita-
tions.

In summary, the work offers valuable contributions to the
field of dynamic scene rendering, providing a solid founda-
tion for future research and practical applications. With im-
provements in documentation, expanded experimental eval-
uations, and exploration of new directions—such as distin-
guishing between static and dynamic Gaussians—the pro-
posed framework has the potential to set new standards in
the area.
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