
Report on “Texture-GS: Disentangling the Geometry and Texture for 3D
Gaussian Splatting Editing”

Reviewer Fernando

firstauthor@i1.org

Archaeologist Diana Aldana
IMPA

diana.aldana@impa.br

Hacker Leoanrdo Nanci
UFF

leonardonanci@id.uff.br

PhD Student Victor Ferrari
UFF

victorferrari@id.uff.br

1. Reviewer

Sugestão para o Revis@r: ler as orientações do CVPR. Ten-
tem manter o relatório dentro de 8 páginas.

1.1. Summary

Descreva brevemente o método e sua contribuição para
visão computacional ou computação gráfica. Forneça sua
avaliação sobre o escopo/magnitude da contribuição do ar-
tigo. Segue uma sugestão de estrutura para o resumo.

• Problema abordado;
• Motivação;
• Resumo do método;
• Lista de contribuições.

Descreva o método e faça uma ánalise justificando cada for-
mula utilizada. A exposição está clara? Como poderia ser
melhorada?

1.2. Strenghts

• Ideias interessantes validadas através de experimental-
mente e de forma teórica, novas ferramentas, resultados
impressionantes, . . .

• O que alguém da área aprenderia lendo o paper?

1.3. Weaknesses

• Falta de experimentos (quais?)
• Alegações enganosas e erros
• Difı́cil de reproduzir (Participação do Hacker)

1.4. Evaluation

Dê uma classificação geral do trabalho e do artigo em uma
escala contı́nua de 1 a 5, onde 1 é o pior e 5 é o melhor.
Especificamente: 1 = Rejeitar, 2 = Possivelmente rejeitar,
3 = Duvidoso, 4 = Possivelmente aceitar, 5 = Aceitar.

Deve ficar claro quais dos pontos positivos e negativos
foram mais considerados.

2. Archeaologist

Disentangling textures and texturing 3D objects are clas-
sical problems in computer vision. Currently, one of the
most common approaches to pass a texture to an object
it is to represent an object by a mesh and use an uv-
parametrization. In general, it is desirable for it to be a
bijective function between the 3D space and a parametric
domain. However, it is not straightforward as to how to
define this function for other representations of 3D objects
such as NeRF [2] or 3D Gaussian Splatting (3DGS) [1].

In that sense, there have been many works tackling the
problem of texturing NeRFs [3, 5, 7]. In particular, we high-
light NeuTex [6] as the main inspiration of Texture-GS. This
work also aims to learn a parametrization of the space us-
ing a bijective function Fuv . Specifically, this function is
trained so that it approximates to a bijective function using
the loss term

Lcycle =
∑

wi||F−1
uv (Fuv(xi))− xi||22.

Note that this loss also appears in Texture-GS. Note that
this function is trained using exclusively the position in the
space. On the other hand, the view-dependent informa-
tion given by the angles (θ, ϕ) are given as an input to the

1

https://docs.google.com/presentation/d/e/2PACX-1vT8bmHIEI3fBLTqSJpTV41mSAkf8_Y-yxahXokAaa4KnqfOuFHFvNYtSzyheoh_wiwEebz_YbQV2ivN/pub?start=false&loop=false&delayms=3000&slide=id.g14388b2f8a3_1_78

function Ftex along with the (u, v) coordinates, which re-
turns the color in that coordinate. Observe that this function
stores the original texture using the spherical topology. Fi-
nally, the geometry is encoded in an opacity function Fσ .
The complete pipeline is shown in Figure 1.

Figure 1. NeuTex [6] method pipeline.

Six months later was uploaded in arxiv the work GS-
tex [4]. It tackled the same problem of decoupling appear-
ance from geometry, but used a different scheme to show
improvements compared to Texture-GS. It trained a texture
map/tiling for each gaussian, which would be used to com-
pute the diffuse (non-constant) term of the spherics harmon-
ics that defined the color. This scheme allowed for bigger
variations in the color domain, reconstructing more detailed
objects under similar conditions that Texture-GS (see Fig-
ure 2)

Figure 2. Comparison between Texture-GS and GStex

3. Code and experiments

The authors make the source code associated with the ar-
ticle available at the following repository: https://
github.com/slothfulxtx/Texture-GS.

The repository is well-structured, due to its folder
scheme and modules that divide the files according to their
responsibility in the pipeline. The README is clear and
includes simple commands, thanks to the provided scripts
and YAML to configure the different executions.

In general, the equations presented in the article are im-
plemented clearly. However, there are discrepancies in cer-
tain parts of the code. For example, in the computation of
Equation 5, based on the Chamfer Distance, the import of
the function that computes the distance is commented out

without apparent reason (recently fixed). Additionally, in
the implementation of Equations 4 and 6, the neural net-
works ϕ and ϕ−1 receive an extra parameter geo emb of
type torch.embedding, which is not mentioned in the ar-
ticle, and whose origin and function could not be deduced.

The greatest difficulty encountered in reproducing the
method was installing the dependencies; specifically, in-
stalling compatible versions of the CUDA environment with
the Torch and PyTorch3D packages. The issue was resolved
by configuring a ”clean” environment on the Google Colab
online notebook platform.

However, due to the limitations of using the platform’s
hardware acceleration, it was not possible to complete all
steps of the pipeline proposed by the authors. The steps of
extracting a 3DGS model and training the texture mapping
functions were carried out. However, the texture extraction
exceeded the available GPU access time. Based on the exe-
cution time of the third step and the displayed logs, the code
seemed to be able to fulfill the task, given enough time.

For the experiments presented in class, pre-trained mod-
els available in the aforementioned repository were used.
Initially, I tested the re-texture script, which enables insert-
ing a new image to texture the model. As shown in Fig. 3
(left), the generated results were satisfactory, with the al-
tered texture maintaining the shades of the original model.
Finally, I experimented zeroing the Jacobian used to ap-
proximate the texture points around the center of each Gaus-
sian. The goal was to analyze the level of detail captured by
the texture relative to that recorded by the Gaussians. As
observed in Fig. 3 (right), much of the object’s lighting was
lost, leading to the conclusion that the Gaussians are respon-
sible for coarse modeling, while the texture represents the
finer characteristics.

Figure 3. Experiments results: Re-rextured (left) and Zeroed Ja-
cobian (right)

2

https://github.com/slothfulxtx/Texture-GS
https://github.com/slothfulxtx/Texture-GS
https://github.com/slothfulxtx/Texture-GS/blob/main/models/uv_map_gaussian3d.py#L197
https://github.com/slothfulxtx/Texture-GS/blob/main/models/uv_map_gaussian3d.py#L197
https://github.com/slothfulxtx/Texture-GS/blob/main/models/uv_map_gaussian3d.py#L186

4. PhD project

We propose two different approaches that could be used
based on the studies of TextureGS. The first proposal is to
develop an application to improve the 3D artist workflow.
This application would help with the challenges mentioned
in the TextureGS paper, such as the complexity of editing
conventional 3D representations. Based on the paper’s re-
sults, which decouples geometry and appearance by map-
ping 2D textures onto 3D surfaces, the tool would provide
a platform for real-time editing. Artists could modify tex-
tures and view the results, leveraging the real-time render-
ing capabilities of consumer-level GPUs, similar to the per-
formance shown in the Texture-GS paper.

The application would include automated tools for cre-
ating UV maps, reducing the need for manual adjustments.
Combining a UV mapping module with the one used in
Texture-GS would automatically generate the UV coordi-
nates, improving efficiency in the creation process. Ad-
ditionally, the tool would integrate with existing software
such as Blender, Maya, or Unreal Engine, allowing artists to
make adjustments and export their work. The result would
be an optimized pipeline that enhances creative flexibility,
enabling texture swapping and fine-grained customization
in a more accessible and efficient manner.

The second proposal focuses on improving texture ma-
nipulation by compartmentalizing textures based on the spe-
cific features of the 3D object, such as materials, regions, or
geometric properties. As described in the paper, the method
of disentangling geometry and texture could be extended to
generate distinct textures for different object attributes, such
as metallic surfaces, translucent parts, or opaque areas. This
would allow for a more granular approach to texture editing.

The system would use machine learning techniques to
automatically identify and classify different object parts
based on their physical and visual characteristics. Once
classified, it would enable the export of modular textures
optimized for different editing software, improving the per-
formance of the rendering pipeline. Additionally, this ap-
proach would support more complex operations, allowing
artists to adjust individual regions without affecting others,
thus providing detailed control over the object’s appearance.
For example, a 3D object with both a glass surface and a
metal frame could have its textures separated and edited
independently, preserving the integrity of the design while
providing flexibility for fine-tuned adjustments.

Both proposals build on the advancements introduced in
Texture-GS, offering solutions that simplify the 3D artist
pipeline and improve performance and accessibility. These

innovations would benefit gaming, animation, and virtual
reality industries by simplifying workflows and enabling
more efficient editing.

5. Conclusões

Apresente as conclusões, sugestões de tı́tulo e um resultado
ausente que o artigo poderia ter incluı́do.

References

[1] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and
George Drettakis. 3d gaussian splatting for real-time radiance
field rendering. ACM Trans. Graph., 42(4):139–1, 2023. 1

[2] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view synthe-
sis. Communications of the ACM, 65(1):99–106, 2021. 1

[3] Keihachiro Moriyasu. An elementary primer for gauge theory.
World Scientific, 1983. 1

[4] Victor Rong, Jingxiang Chen, Sherwin Bahmani, Kiriakos N
Kutulakos, and David B Lindell. Gstex: Per-primitive tex-
turing of 2d gaussian splatting for decoupled appearance and
geometry modeling. arXiv preprint arXiv:2409.12954, 2024.
2

[5] Pratul P Srinivasan, Stephan J Garbin, Dor Verbin, Jonathan T
Barron, and Ben Mildenhall. Nuvo: Neural uv mapping for
unruly 3d representations. In European Conference on Com-
puter Vision, pages 18–34. Springer, 2025. 1

[6] Fanbo Xiang, Zexiang Xu, Milos Hasan, Yannick Hold-
Geoffroy, Kalyan Sunkavalli, and Hao Su. Neutex: Neural
texture mapping for volumetric neural rendering. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 7119–7128, 2021. 1, 2

[7] Fangneng Zhan, Lingjie Liu, Adam Kortylewski, and Chris-
tian Theobalt. General neural gauge fields. arXiv preprint
arXiv:2305.03462, 2023. 1

3

	. Reviewer
	. Summary
	. Strenghts
	. Weaknesses
	. Evaluation

	. Archeaologist
	. Code and experiments
	. PhD project
	. Conclusões

