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1. Reviewer

1.1. Summary

GOF proposes improvements on the method of 3D Gaussian
Splatting for surface reconstruction and novel-view syn-
thesis: its central contribution is the development of the
Opacity field, derived from the same images used for train-
ing the model. Additional improvements are also made to
the 3DGS training process, by incorporating the depth dis-
tortion and normal consistency regularization terms from
2DGS[5]. Not only do these modifications improve per-
formance, but they are also modular, which allows for their
incorporation in different Gaussian Splatting pipelines.

GOF’s main objective is surface reconstruction from
multiple views of a static scene, in the form of a mesh that
accurately describes the surface of the objects in the scene.
There are also two secondary objectives: keeping a lim-
ited mesh size, and extracting accurate background meshes
in unbounded scenes, a challenge which existing methods
such as Neuralangelo [11] and 2DGS [4] still struggle with.

1.2. Methodology

Gaussian primitives. Similar to 3DGS [6], GOF mod-
els the scene through a set of K 3D Gaussian primitives
G1, . . . ,GK . For a given point x in world space, a Gaussian
Gk is defined as follows:

Gk(x) = e−
1
2 (x−pk)

T ·Σk
−1·(x−pk) (1)

where pk is the Gaussian’s center and Σk := Rk ·Sk ·Sk
T ·

Rk
T is the variance matrix.

For rendering and optimization of these Gaussians, each
Gk is evaluated on a set of rays departing from each cam-
era position. To find the intersection between a ray and a
3D Gaussian, one writes the ray with camera origin o and
direction r as

x(t) = o+ t r; (2)

We then express the ray in the Gaussian Gk’s coordinate
system1 :

og =Sk
−1 ·Rk

T · (o− pk) (3)

rg =Sk
−1 ·Rk

T · r (4)
xg =og + t rg (5)

Using these definitions, one can compute the depth t∗ at
which the Gaussian intensity Gk is maximized as t∗ =

−og
T ·rg

rgT ·rg .

Opacity field. For each Gaussian and viewing ray, one
can define the opacity along the ray:

Ok(Gk,o, r, t) :=

{
G1D
k (t) , if t ≤ t∗

G1D
k (t∗) , if t > t∗

(6)

This definition extends naturally to multiple Gaussians
through alpha-blending:

O′(o, r, t) :=

K∑
k=1

αkOk(Gk,o, r, t)

k−1∏
j=1

(
1−αjOj(Gj ,o, r, t)

)
;

(7)
1It should be noted that, in the paper, the definitions of og and rg have

a minor mistake: the authors write Rk instead of Rk
T .
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Finally, the Gaussian Opacity Field O : R3 7→ [0, 1]
is defined as the minimum opacity of a point x along all
viewing rays2:

O(x) := min
(o,r)

({
O′(o, r, t) : x(t) = o+ t r

}
∪ {1}

)
;

(8)
The intuition behind this field is that it measures how visi-
ble a given point is in relation to the training camera views:
a point of opacity 1 is understood to be on the interior an
object or outside the bounds of the scene, while a point
of opacity 0 is plainly visible to some camera. Defined in
this way, opacity is continuous and bounded throughout R3,
which facilitates mesh extraction through Marching Tetra-
hedra.

For mesh extraction, the object’s surface is defined as a
level set of opacity {x : O(x) = 0.5}. Some points of in-
terest are created on a bounding box of size 3σ around each
Gaussian, from which a sparse mesh of tetrahedra is created
through Delaunay triangulation. A Marching Tetrahedra al-
gorithm [10] modified with a binary search is then used to
extract a triangular mesh corresponding to this surface. Cre-
ating the tetrahedra only in the Gaussian’s bounding boxes
limits the computation time and the complexity of the final
triangular mesh.

Regularizations. The paper incorporates the depth
distortion and normal consistency regularizations from
2DGS[4]. However, the normal consistency relies on the
definition of Gaussian normals, which is not quite clear in
the text. The paper defines the normal as being ng = −rg
in the Gaussian coordinate system. Then, to get the nor-
mal in world coordinates, one ”reverses” normalization and
scaling:

n = −Rk
T · Sk

−1 · rg (9)

Following our corrected definition of rg, the normal direc-
tion becomes

ng = −Rk
T · Sk

−2 ·Rk
T · r; (10)

Despite what is stated in the text, this is not equivalent to
normalizing and denormalizing. Even though the ablation
section shows good quantitative results for this approach, a
better mathematical explanation is required.

1.3. Strengths

The paper’s main contributions to the state-of-the-art are:

1. Applying the depth distortion and normal consistency
regularizations from 2DGS [4] to 3D Gaussian optimiza-
tion;

2One problem with the paper is that it writes O(x) :=
min(o,r) O

′(o, r, t), which is not rigorous.

2. Defining the Gaussian Opacity Field for delimiting the
surface of an object or scene;

3. Proposing an efficient method for extracting a mesh from
a 3D Gaussian cloud, by adapting the Marching Tetrahe-
dra [10] algorithm.

These contributions can be implemented together, as pro-
posed in the paper, or separately, as part of a different Gaus-
sian Splatting pipeline. As an example, the authors apply
the opacity field and the mesh extraction method to the out-
put of Mip-Splatting in order to extract a surface mesh, ob-
taining positive results.

Additionally, GOF achieves the best surface reconstruc-
tion among state-of-the-art explicit methods, with compu-
tational cost significantly smaller than implicit methods, as
demonstrated through extensive experimentation on well-
established datasets, and shows unprecedented capacity for
background mesh reconstruction in unbounded scenes. We
also argue that the definition of the Opacity field elegantly
associates surface reconstruction with available view infor-
mation, the result of which is a high quality mesh extraction.

1.4. Weaknesses

Some equations in the paper are not written in a rigorous
manner or have minor mistakes, as pointed out throughout
this review. More concerningly, the definition given for the
Gaussian normal used in the normal consistency regular-
ization is unclear, and the theoretical justification for it is
very weak. Furthermore, the advantageous properties of the
Gaussian Opacity Field that allow it to be used to extract a
level surface are not mathematically proved.

From an empirical standpoint, we believe the paper lacks
a quantitative experiment backing its claim that the meshes
generated by GOF are less memory-intensive than the ones
provided by existing methods. We also found the source
code provided difficult to run in order to replicate the au-
thors’ results: even though installation instructions were
provided along with the code, following them directly re-
sulted in installation errors.

1.5. Evaluation

The mathematically imprecise definitions of the Gaussian
normals and the Opacity field are the paper’s main flaws.
However, if these definitions are rewritten more clearly,
we obtain a sound and innovative methodology that pro-
duces good results, as shown by the experiments. There-
fore, we give the paper a score of 4 out of 5, and suggest
that the authors further develop the mathematical aspects of
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the Gaussian normal and the Opacity field, in order to make
these definitions more sound and prove that they work as
intended.

2. Archeologist

GOF[15] is situated within the literature on surface recon-
struction with Gaussians. Previous approaches in this do-
main have demonstrated limited success, while relying on
different methods.

For example, SuGaR[3] employed Poisson reconstruc-
tion, while 2DGS[4] utilized 2D disks combined with TSDF
fusion techniques.

GOF differentiates itself from these surface extraction
methods by constructing opacity fields through a ray-
tracing approach. This approach hinges on a unique method
of calculating the intersection between rays and Gaussians.

The authors attribute their ray-Gaussian intersection
technique to Gao et al. (2023)[2] and Keselman and Hebert
(2022)[7]. Gao et al. (2023)[2] acknowledged that their
method was inspired by Keselman and Hebert (2023)[8],
who, in turn, clarified that their 2023 paper[8] built upon
their earlier 2022 approach[7], making it compatible with
3D Gaussians.

Keselman and Hebert (2022)[7] proposed approximating
the intersection of a ray with a 3D Gaussian as the point
where the Gaussian’s contribution peaks.

Currently, GOF[15] has accrued 34 citations. Of these,
10 papers actually incorporate elements of the method in-
troduced in GOF, with 6 adopting only the improved densi-
fication method proposed in the paper.

One notable example is 3Diffusion[16], which aims to
create realistic avatars with high-fidelity geometry and tex-
ture using 3D Gaussians. While 3Diffusion relies on GOF
to generate depth maps, it employs volumetric TSDF fusion
to extract the final meshes.

3. Code and experiments

First we will review the overall structure of the code and
dive into certain details of it.

• It begins by initializing points in 3 dimensions with pre-
vious runs of COLMAP

• It then trains RGB and depth model using 3DGS [6] and
2DGS [4] loss functions and model including hyper . To

Figure 1. Code to construct GOF

do this it employs densification as seen in 3DGS and
2DGS. Particularly it does so every 100 iterations be-
tween iterations 500 and 15000. The hyperparameters for
depth distortion and normal consistency are hard coded as
100 and 0.05 respectively.

• To make sure it explores the scene appropriately the
cameras are sampled randomly but eliminated until ev-
ery camera has been explored. Also it has hard coded
within its specifications to use 30% high-resolution cam-
era which are identified in the pre-processing of data.

• To make sure they avoid numerical failures they reset
opacity every 3000 iterations. In addition to this they
use spherical harmonics to give a view dependent color
of a single point in space. To make sure this Spherical
Harmonics converge they begin with no view dependency
and make sure to increase the complexity of the S.H. ev-
ery 1000 iterations.

• Finally the code extracts the mesh from the depth calcu-
lations (obtained from the minimum opacity values from
different view points mapped onto object space) using a
binary search over the tetrahedra vertices and renders the
scene. The specific code is provided in figure 1.

Then we proceeded to do a small experiment over the
code. Particularly we turned off the hyper parameters of
depth distortion and normal consistency and compared them
to the original hyper parameters. Also we tried to compare
the result of the render when ending the training at 7000
iterations comparing it to 30000 iterations. Unfortunately
the results of the experiments where unsuccesful because
the results in all 4 cases where all the same as shown in
Figures 2 through 5.

4. PhD Project

As stated previously, one of the major advantages of this pa-
per is their mesh reconstruction on unbounded scenes. We
aim to leverage this property to segment the 3D objects of
the scene and manipulate them separately. Specifically, our
main idea would be to cluster the scene gaussians such that
each group represents a different object. Then, these gaus-
sians would become a discrete representation of an element
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Figure 2. Original hyperparameters 7000 iterations

Figure 3. Hyperparameters set to 0 and 7000 iterations

of the scene, and can be manipulated to introduce transfor-
mations to the object.

Similar ideas of scene edition using gaussian splatting
representations have been explored before. Zhou et al. [17]
uses contrastive learning to categorize the gaussians and ap-
ply scene editing. However all experiments are done on
closed scenes. Other works use gaussians to modify objects
on the scene such as erasing/translating them [1, 14]. Zhu
et al. [18] use physical constraints to move dynamically the
gaussians that compose an object. Their results show real-
istic movement of objects, however their method focus only
on traffic scenes.

Given the trained gaussians representing a 3D scene and

Figure 4. Original hyperparameters and 30000 itera-
tions

Figure 5. Hyperparameters set to 0 and 30000 iterations

the set of views used to train them, we want to learn the clus-
ters of the scene. First, we obtain the segmentation maps
and image correspondences using the algorithms of Depth
Anything [9] and COLMAP [12, 13]. We use them to se-
lect the initial categorization of the gaussians in the different
classes in the following fashion:

• Single view: We classify the gaussians closest to the cam-
era by their class in the segmentation mask.

• Multi-view: We use the correspondences between pixels
of different images to find the 3D point that is projected to
the pixels. Then, we select one of such points as the cen-
troid of that class’ cluster. Experiments are necessary to
observe which criterion is appropiated to select the cen-
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troid.
• All gausians classification: For those gaussians occluded

from all angles, we may use an algorithm such as kkn to
classify them to the nearest cluster center.

After initializing the cluster classification, we may train
the model to learn the classification using contrastive learn-
ing, and may even consider learning the centroids of the
clusters to suppress the initialization dependence. Since the
gaussians have already learned the scene, pruning and den-
sification may appear unnecessary. However, we could take
advantage of such stages to better define the boundaries be-
tween classes. For example, a big gaussian in the boundary
of two classes may be split into two, each belonging to one
of the classes.

Ideally, the result of such training may guarantee than a
cluster of gaussians represents a single object detected by
the segmentation mask. This cluster of gaussians can be
manipulated to modify the object (e.g., rotation, removal,
translation, flow) in the scene. Finally, observe that since
each object is represented by a cluster of gaussians, we can
reconstruct a mesh using the thethraedra algorithm in the
paper applied to only this class, reducing the time and cost
of mesh extraction.

5. Conclusion

GOF shows a novel scheme for extracting a mesh from a 3D
scene with multiple training views. In doing so, it achieves a
good balance between mesh fidelity and computation time,
which is clearly demonstrated by the experiments done by
the authors. However, it still shows room for improvement
compared to implicit methods such as NeurAngelo [11].
Furthermore, there is still room for improvement when it
comes to the mathematical definitions utilized in the paper:
a possibility of improvement would be an effort to demon-
strate why, theoretically, the GOF pipeline outperforms its
competitors, notably in background meshes.
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