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1. Revisor
1.1. Overview

FlowMap is a method designed to recover high-quality
camera poses, intrinsics, and dense depth maps for
video sequences. Unlike conventional Structure-from-
Motion (SfM) methods like COLMAP, FlowMap employs
a gradient-descent-based approach that directly optimizes
depth, intrinsics, and poses using optical flow and point
track correspondences. This differentiable approach allows
integration into deep learning pipelines and removes the
reliance on precomputed camera parameters. The method
utilizes feed-forward re-parameterizations to ensure consis-
tency and robustness while maintaining differentiability.

Key contributions include:

* End-to-end differentiable formulation for camera and
depth estimation.

* Dense per-frame depth maps instead of sparse 3D points.

* Achieves comparable quality to COLMAP in 3D recon-
struction and novel view synthesis tasks in some scenar-
ios.

1.2. Methodology

Given a video sequence, the goal is to supervise per-frame
estimates of depth, intrinsics, and pose using known corre-
spondences. That will be done using the optical flow in-
duced by the camera movement through the scene. The
known correspondences are derived from two sources: 1)
dense optical flow between adjacent frames and 2) sparse
point tracks which span longer windows.
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FlowMap’s pipeline is shown in Figure 1.

Depth Neural Network. Depth is parameterized as a
neural network that maps an RGB frame to the correspond-
ing per-pixel depth. They use the lightweight CNN version
of MiDaS [5], pretrained with the publicly available weights
trained on relative-depth estimation. The weights of the en-
tire network are optimized during training.
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Figure 1. FlowMap’s pipeline
Source: FlowMap[11]

Intrinsics solver. Camera intrinsics are solved consider-
ing a set of 60 focal length candidates K, that range uni-
formly from .5 to 2. A loss function Ly, is calculated con-
sidering the pose calculated by K}, and finally intrinsics K
is computed via a softmin-weighted sum of the candidates,
as we can see below.

To make this approach computationally efficient, it is as-
sumed that the intrinsics can be represented via a single K
that is shared across frames. Second, we assume that /& can
be modeled via a single focal length with a principal point
fixed at the image center. Finally, we only compute the soft
selection losses on the first two frames of the sequence.
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Figure 2. Pose solver
Source: FlowMap[11]

B ~exp(—Lg)
Kedwdh st O

Pose solver. The relative poses between consecutive
frames are solved using their depth maps, camera intrinsics,
and optical flow. To do so, they first unproject their depth
maps, then solve for the pose that best aligns the resulting
point clouds, as shown in Figure 4

More formally, depth map alignment is cast as an or-
thogonal Procrustes problem, to draw upon this problem’s
differentiable, closed-form solution.The depth maps D, and
D; are unprojected using their respective intrinsics K; and
K, to generate two point clouds X; and X;. Next, be-
cause the Procrustes formulation requires correspondence
between points, the known optical flow between frames @
and j is used to match points in X; and X;. This yields
X7 and X¥7, two filtered point clouds for which a one-
to-one correspondence exists. The Procrustes formulation
seeks the rigid transformation that minimizes the total dis-
tance between the matched points:

2
P, = argmin HWW(X? _ PXﬁ)H )
PcSE(3) 2

The diagonal matrix W contains correspondence
weights that can down-weight correspondences that are
faulty due to occlusion or imprecise flow. This weighted
least-squares problem can be solved in closed form via a
single singular value decomposition, which is both cheap
and fully differentiable. As in FlowCam, these weights are
predicted by concatenating corresponding per-pixel features
and feeding them into a small MLP.

Correspondence Loss. Consider a 2D pixel at coordi-
nate u; € R? in frame 7 of the video sequence. Using frame
1’s estimated depth D; and intrinsics K;, we can compute
the pixel’s 3D location x; € R3. Then, using the estimated
relative pose P;; between frames ¢ and j, we can transform
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Figure 3. Camera-induced Flow Loss
Source: FlowMap[11]

this location into frame j’s camera space. Finally, we can
project the resulting point P;;x; onto frame j’s image plane
to yield an implied correspondence 1;;. This correspon-
dence can be compared to the known correspondence u;; to
yield a loss £, as illustrated in Figure 3.
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1.3. Strengths

» Fully differentiable design suitable for deep learning
frameworks.

* Presents a closed form solution to pose and intrinsics es-
timation

* Demonstrates competitive performance with state-of-the-
art methods like COLMAP, particularly for novel view
synthesis.

1.4. Weaknesses

* Higher computational demands, requiring significant
GPU memory.

» Performance is highly dependent on high-quality optical
flow and point tracking.

» Limited applicability to unstructured image collections,
as it primarily supports continuous video sequences.

* Lacks robustness in long sequences due to cumulative
drift in pose estimation.

1.5. Evaluation

FlowMap presents an alternative to traditional SfM tech-
niques, particularly for scenarios requiring differentiability.

That being said, its achievements aren’t as impressive as
the authors suggest, its results are on-par with COLMAP
only in limited scenarios with other concurrent methods
performing better on a wider set of scenarios, and its meth-
ods and implementation aren’t sufficiently well explained.
Therefore, I suggest the paper should be rejected.



2. Archaeologist
2.1. Previous and basement works

The main goal of FlowMap is to replace COLMAP as the
input for 3DGS, with the advantage of being end-to-end
differentiable. Intending to achieve this, the method re-
ceives video and off-the-shelf correspondences and calcu-
lates poses, intrinsics and geometry through specific neural
networks. The works used to enable this will be discussed
below.

Towards robust monocular depth estimation: Mix-
ing datasets for zero-shot cross-dataset transfer[5]. This
work presents the MiDaS neural network, which is used
in a lightweight version for FlowMap. MiDaS is a depth
network that produces inverse depth maps, receiving RGB
images and depth annotations as input. The paper uses a
zero-shot cross-dataset transfer protocol, which states that
the test datasets were not used in the training.

RAFT: Recurrent all-pairs field transforms for op-
tical flow.[12] and GMFlow: Learning optical flow via
global matching.[14] The RAFT and GMFlow are deep
networks that capture optical flow from input images (video
frames). RAFT uses a encoder to extract per-pixel features,
after that, generate 4D correlations with a correlation layer,
relates this with a context encoder and then produces the op-
tical flow. While GMFlow extracts the features, use a Trans-
former for feature enhancement, compute a feature match-
ing and flow propagation, to then generate the optical flow.
These two deep networks are used for FlowMap to generate
optical flow of a image in a specific focal set and camera
pose. This flow is compared with the ground truth to cal-
culate the intrinsics of the camera. RAFT is applied in the
per-scene optimization and GMFlow in the pre-training.

FlowCam: Training generalizable 3d radiance fields
without camera poses via pixel-aligned scene flow.[10].
FlowCam is a method that reconstructs camera poses with
an existent optical flow, following the descripted in the Fig-
ure 4. FlowMap uses a pose solver based in this.

CoTracker: It is Better to Track Together.[4]. Co-
Tracker is used in FlowMap to obtain point tracks. This
method tracks 2D points from videos with RGB frames. To
achieve this, the authors apply an attention mechanism to
share information between tracked points and also add con-
text to them.
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Figure 4. FlowCam Method Overview [10]

2.2. Comparative and concurrent works

Structure-from-motion revisited.[8]. This paper is re-
sponsible for the classical COLMAP, applied in the most 3D
reconstruction, being the major concurrent to the FlowMap.
The main difference between these two are the pipeline,
FlowMap is end-to-end differentiable, while CLOMAP is
not. The FlowMap authors argue that this the main advan-
tage of their method compared COLMAP, defending that
their technique can be used in a end-to-end deep learning
pipeline, however, this is not done in the paper. Otherwise,
the FlowMap is just input in the 3DGS in the same way than
COLMAP.

Visual Geometry Grounded Deep Structure From
Motion.[13]. Shortly called VGGSfM, this work presents
an end-to-end differentiable method, also concurrent to
COLMAP[S], but using the principles of these last. The
VGGSIM overview can be seen in the Figure 5.

2.3. Current works

The FlowMap paper is not published and is also very new,
then there is no much works based on it. The papers that
cite FlowMap, uses it just as related or comparative work
[2,3,6,9].
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Figure 5. VGGStM Method Overview [13]



3. Code and experiments

4. PhD Project

Because of its dependence on optical flow or point tracks to
find correspondences, FlowMap can only process continu-
ous video. Additionally, cumulative drift poses challenges
for long video sequences.

The authors suggest that leveraging unstructured corre-
spondences might be used to overcome this limitation.

So we propose to incorporate SuperPoint[1] to extract
features off of any pair of images, and SuperGlue[7] to ex-
tract correspondences between them, as shown in Figure 6.
Then, FlowMap might be extended to support unstructured
collections of images.
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Figure 6. SuperPoint-SuperGlue-FlowMap

5. Conclusion

FlowMap introduces a novel framework for end-to-end dif-
ferentiable 3D reconstruction, challenging the dominance
of traditional SfM methods like COLMAP. While its inno-
vative approach yields significant benefits, challenges re-
lated to efficiency, robustness, and generalization remain.
Addressing these issues in future research might make
FlowMap a practical alternative for scalable 3D vision ap-
plications.
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