2D Gaussian Splatting for Geometrically Accurate Radiance Fields

Reviser Archaeologist Hacker
Esteban Wirth Esteban Wirth Leonardo Mendonga
esteban.wirth.97@gmail.com esteban.wirth.97@gmail.com IMPA

leonardo.mendonca@impa.br

PhD Student
Leonardo Mendonca
IMPA

leonardo.mendonca@impa.br

1. Review
1.1. Summary

The 2D Gaussian Splatting for Geometrically Accurate Ra-
diance Fields centers itself around the improvement of the
3DGS [4] paper which predates it. Its objective is to im-
prove the recreation of the scene by having a better control
of depth calculation and having a more accurate method
to model surfaces without overly restricted conditions or
highly dense cloud points.

In order to do this they borrow the Gaussian equations of

(4]

G) = ean(—3 - p)"S 0 -m) (D)

Where the covariance matrix in equation 1 is defined as > =
RSST RT with R is a rotation matrix and S a scaling matrix.
Still from the 3DGS paper [4] they adapt this representation
in the object world to the camera image as

Y =Jgwewt gt)

Where J and W are matrices that rotate and project respec-
tively the scene onto the image.

To adapt these equations to the 2D case they cut out the
third row and column. Unfortunately the reasons as to why
they do this are not explained and at face value seem mathe-
matically wrong given the Gaussians that are being used are
not normalized so this operation doesn’t project correctly
the 3D gaussians into 2D ones.

They use this 2D gaussians in order to define a view de-

Image frame (x,y)

Tangent frame (u,v)

++++++H A+t
t+++ b+ +
+++ 4+ +++ 4+
++ + $++
+++ + +
++++ ++
+++++ +++ 4
tH++t+ A+
t++++ A+

2D Gaussian Splat
in object space

2D Gaussian Splat
in image space

Figure 1

pendent color value for points in space.

K k—1
c(x) =Y aaxGiP (@) [J(1 - ;G3P (@) B3
k=1 j=1

Equation 3 determines the color value of the center of each
gaussian which accumulates oppacity defined as «.

After determining this they begin the modelling of the
surfels in object and image space as shown in Figure 1.

They then introduce the following two equations.

P(u,v) = p + sututs + Syt = H(u,v,1, 1)T 4)

_ Sutu Suty 0 Dk

=1%o o 1)
The above equations are dimensionally incoherent. The

idea they are conveying is they can embed model the 2D

gaussians using the center and variation vectors through a
linear transformations and embedding the variation vectors
in 4D space.

They then proceed to define a second way to model a
gaussian
u? + v?
—_— 6
) ©
abusing notation and giving no context as to why they have
now 2 different definitions for the gaussians.

G(u) = exp(—

To create a way to relate the image space to the object
space they define an embedding and projection of the points
as follows

x = (zz,y2,2,1) = WP(u,v) = WH(u,v,1,1) (7)

Where z is determining the depth to the point from a cer-
tain view point. To determine the intersection from a point
(z,y) in image space to a point in object space they define
the following elements in the 4D embedding space. They
represent a ray passing through this point as the intersec-
tion of the two orthogonal plains that contain pass through
the coordinates x and y. They claim that in 4D embed-
ding space this can be modelled as h, = (—1,0,0,x) and
hy, = (0,—1,0,y)T. There are no in depth arguments as to
why this is true or mathematically rigurous. By using the
previous transformations they are able to create an efficient
method to calculate the transformation from image to object
space.

hy=WH)'h, h,=(WH)"h, ®)

By having orthogonal vectors they are able to develop an
efficient way of calculating these values even though they
are not fully explained in the paper.

To handle degenerate solutions they include a minimum
width that the gaussians have to have in order to not loose
them due to being two dimensional. Giving rise to the final
gaussian function that will define the color function that was
based on [4].

r—c

G(x) = maz{G(u(x), G(

} €))

This equation abuses notation and has no explanation for
the value of o that is being used.

After this they introduce two new loss functions which
are the biggest improvements of the previous models. The
depth loss function defined as

Ld = Zwiwﬂzi — Zj‘ (10)
i,

Where w represents the blending of opacity without consid-
eration of color. This loss functions allows the gaussians to
stick together and create coherent objects.

The other innovative loss function that they develop was
the normal loss function which compares the normal created
by the gaussians to the normal calculated through finite dif-
ferences over the image. This allows for a consistency be-
tween the normals observed in the cameras and the normals
rendered in the scene.

Finally they combine these two loss functions with the
color loss function taken from [4] to create the total loss
function.

The results of experiments where good as compared with
other state of the art models.

In conclusion this paper innovated over the loss functions
and created a working model that rendered scenes in a very
good way. Unfortunately the lack of mathematical rigorous
makes the paper unacceptable as a scientific development.
For this it is advised the paper is resubmitted with a more
technical and thorough mathematical explanation of their
methods.

2. Archaeologist

2 Dimensional Gaussian Splatting is one of the precur-
sors of the usage of Gaussian’s to render three dimensional
scenes. It builds from the original idea of 3DGS and ad-
vances to a better method to determine depth and model
scenes by using two dimensional Gaussians. Particularly it
draws inspiration from two fundamental papers.

First it cites and takes the main idea of 3DGS [4]. Specif-
ically it uses the notion of using Gaussians to model a scene
with view dependent properties. Furthermore it inherits one
of the techniques used to assure convergence from [4] which
is densification that modifies the number of Gaussians by
splitting or merging them.

From this base idea it combines the notion of modelling
the surface of a volume via two dimensional Gaussians from
[7]. Where they take the mathematical intuitions of using
surfels to model an object but improve from it by calculat-
ing the normal of the surfel as the cross product over the
minimum and maximum change directions of each gauss-
sian. This allowed [3] to improve the results particularly
require less dense point clouds to model an object. They
managed to do this by also including two new loss func-
tions that assure a better depth reconstruction and consis-
tency between the modelled normals of the gaussians and

the observed normals of the cameras.

From these innovations other papers have been able to
grow and develop. For example [6] developed a model to
create 4D scenes from generated videos. This are videos
where the viewer can move through the scene while the
video is occurring. It used the loss functions of 2DGS to
be able to create these scenes and model them appropiately.
To be able to adapt the 2DGS model to create a 4D model
they included a distortion element that allowed the scene to
vary through time.

3. Code and experiments

We have executed the 2DGS code, made available by
the authors in https://github.com/hbbl/2d-
gaussian-splatting. Despite the installation in-
structions present in the README.md, there were some dif-
ficulties:

1. The environment.yml file was not complete: we had to
add the python modules setuptools and matplotlib for the
installation and code to work without errors.

2. The 2DGS documentation fails to mention CUDA,
whose installation is necessary for training and infer-
ence to work properly. We also went through a process
of trial-and-error in order to install the right version of
CUDA and the correct C++ kernels.

In spite of the problems with the installation, the execu-
tion of the code is made relatively straightforward by the
command line interface implemented by the authors. Most
of the hyperparameters can be set through command line ar-
guments when calling train.py, as well as input and output
names, image resolution and so on.

3.1. Code analysis

The most performance-heavy parts of the training process,
notably the gaussian rendering, are done inside a CUDA-
optimized C++ script, which employs the user’s GPU for
fast computing. The python files, however, are responsible
for training, pruning and often calling the CUDA C++ files
required to do so.

There were some differences between the methodology
presented in the paper and the actual code implementation.

The densification strategy, mentioned only in passing in
the text, is taken directly from 3DGS [4], and uses mostly
the same hyperparameters. Between the training itera-
tions densify_from_iter (default 500) and densify_until_iter

(15000), the model will periodically split or clone cer-
tain gaussians, depending on their scale. After opac-
ity_reset_interval (3000) epochs, the gaussians with opacity
lower than opacity_cull (0,05) are removed, while the re-
maining ones have opacity reset to 0,01 (hardcoded). These
hyperparameters are given without justification in [4] and
not mentioned at all in [3].

The number of spherical harmonics for anisotropic col-
oring in each gaussian sh_degree (set to 3) is another “hid-
den” hyperparameter. The number of iterations before ap-
plying depth and normal regularization, respectively 3000
and 7000, are not only unmentioned in the text, but also
hardcoded, which hinders future experiments to study the
effect of these parameters.

3.2. Experiments

3.2.1 Depth distortion regularization

This regularization loss term seeks to minimize the distance
between the depth of different gaussians intercepted by the
same ray, therefore grouping the gaussians near the physi-
cal surface of the object. The paper [3] suggests using the
weight parameter = 1000 for bounded and o« = 100 for
unbounded scenes. However, the code sets the default value
of this parameter to zero, and, in the authors’ own experi-
ments, the value of a used changes from dataset to dataset.
In the MipNeRF360 [1] dataset, this regularization is not
used at all, and in Tanks and Temples [5], « is set to ei-
ther 10 or 100, depending on the scene, and regardless of
whether it is bounded or unbounded.

As such, in order to investigate the importance of this
weight parameter, we have trained the model on the Bonsai
scene of the MipNeRF360 dataset with resolution 390 x
260, setting alternatively « = 0 (as used in the authors’
tests) and o« = 1000 (textually recommended in the paper
for bounded scenes such as this one). Results are shown
in fig. 2. One may observe in these tests that there are
artifacts near the upper edge of frame 0, which is likely not
covered by the training views, and a significant distortion
in the glass windows of view 12, which illustrates 2DGS’s
inadequacy for modeling semi-transparent materials. There
is no apparent difference, however, between the rendered
images using &« = 0 and o = 1000. This suggests that
perhaps the depth distortion regularization does not have as
strong an impact as suggested by the authors.

https://github.com/hbb1/2d-gaussian-splatting
https://github.com/hbb1/2d-gaussian-splatting

(e) o = 1000

(f) o = 1000

Figure 2. MipNeRF360 Bonsai scene, frame O (left) and 12 (right),
after 30000 training iterations, rendered after training with differ-
ent values of depth distortion weight a.

3.2.2 Training and rendering resolution

After training in 390 x 260 resolution, we rendered the opti-
mized scene in a higher resolution of 1559 x 1039. The goal
of this experiment was to investigate the method’s perfor-
mance for novel-view synthesis in higher resolutions than
the one it was trained on. Since the results were very simi-
lar for the reconstructions with and without the depth distor-
tion, we use here o = 0, the same value used by the authors
in their evaluation of the MipNeRF360 dataset. Results are
shown in fig. 3.

We conclude that reconstruction quality is directly con-
nected to the rendering resolution: in the high-resolution
render, the image is characterized by very thin gaussians,
inconsistent with the scene geometry, which are not visible
in low resolution and were therefore not penalized during
training.

(b) Render at 1559 x 1039

Figure 3. Comparison between images rendered with different
resolutions, after being trained on 390 x 260 resolution. Mip-
NeRF360 Bonsai scene, frame 15

4. Projeto de doutorado
4.1. 2D Half-Gaussian Splatting

The paper showed very positive results for surface recon-
struction and novel-view synthesis using planar gaussians,
which can be used to accurately model a great variety of
smooth surfaces.

However, there are many human-made objects and struc-
tures that possess sharp edges, or that are better represented
by manifolds with boundary. We propose therefore a mod-
ification of the method by replacing the 2D gaussians used
in the paper with half-gaussians, defined by the distribution:

w2402

G, v) = 2e= =5 ifv >0
’ 0,ifv<0

an

This modified shape allows one to economically repre-
sent surfaces with a common edge or surfaces whose bound-
ary is a 1D manifold. An expected difficulty, however, is
the fact that eq. 11 has a discontinuity at v = 0. In or-
der for the function to be differentiable, we will need to
define a smoothing function between the two half-planes
v < 0and v > 0, in order to allow for backpropagation.
The “sharpness” of this smoothing function can be either
set as a hyperparameter or as a trainable parameter for each
half-gaussian, but systematic ablation studies are necessary
to decide which strategy is more performant.

4.2. Mixed 2-3D Gaussian Splatting

Despite the good results for opaque surfaces, 2DGS reports
poor reconstruction quality for translucent materials, which
we can also observe in fig. 2. However, these materials
can be accurately represented by volumetric (3D) gaussians,
as seen in 3DGS [4] and EWA Splatting [9]. Therefore,
we propose a mixed approach, where 2D and 3D gaussians
coexist and can be jointly optimized to accurately capture
both opaque surfaces and translucent volumes.

A natural objection is the matter of initialization: each
point in the initial point cloud, produced by COLMAP,
should initialize to either a 2D or 3D gaussian, but it is no
evident that there is a way to determine beforehand what di-
mension each gaussian should have. One possible approach
is to initialize every gaussian as 3D, and convert each of
them to 2D if the ratio between its 3 dimensional scales
reaches a certain threshold (i.e. if the gaussian becomes
”flat enough”).

We may also cite the drawback that, once we mix the 2D
and 3D gaussians, we lose 2DGS’s ability to obtain surface
normals directly, which was useful for normal regulariza-
tion and for mesh extraction. On the other hand, one can
use of the approaches defined in GOF [8] or SuGaR [2],
both of which obtained good results in characterizing the
normal of a 3D gaussian.

Once these obstacles have been overcome, we should
have a robust representation for novel-view synthesis in
scenes that mix opaque and semi-transparent objects.

5. Conclusions

In conclusion even though the paper was successful in de-
veloping a working model the method used throughout it
both in the code and math where unsatisfactory. It would
have been great to see a result over noisy data to see the
sturdiness of the model under more likely conditions when
used in real life.

References

[1] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P.
Srinivasan, and Peter Hedman. Mip-nerf 360: Unbounded
anti-aliased neural radiance fields. CVPR, 2022. 3

[2] Antoine Guédon and Vincent Lepetit. Sugar: Surface-aligned
gaussian splatting for efficient 3d mesh reconstruction and
high-quality mesh rendering. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 5354-5363, 2024. 5

(3]

(4]

(]

(6]

(7]

(8]

(9]

Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and
Shenghua Gao. 2d gaussian splatting for geometrically ac-
curate radiance fields. In ACM SIGGRAPH 2024 Conference
Papers, pages 1-11, 2024. 2, 3

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkiihler, and
George Drettakis. 3d gaussian splatting for real-time radiance
field rendering. ACM Trans. Graph., 42(4):139-1, 2023. 1, 2,
3,5

Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen
Koltun. Tanks and temples: Benchmarking large-scale scene
reconstruction. ACM Transactions on Graphics, 36(4), 2017.
3

Yikai Wang, Xinzhou Wang, Zilong Chen, Zhengyi Wang,
Fuchun Sun, and Jun Zhu. Vidu4d: Single generated video
to high-fidelity 4d reconstruction with dynamic gaussian sur-
fels, 2024. 3

Wang Yifan, Felice Serena, Shihao Wu, Cengiz Oztireli,
and Olga Sorkine-Hornung. Differentiable surface splatting
for point-based geometry processing. ACM Transactions on
Graphics, 38(6):1-14, 2019. 2

Zehao Yu, Torsten Sattler, and Andreas Geiger. Gaussian
opacity fields: Efficient adaptive surface reconstruction in un-
bounded scenes. ACM Transactions on Graphics, 2024. 5
Matthias Zwicker, Hanspeter Pfister, Jeroen Van Baar, and
Markus Gross. Ewa volume splatting. In Proceedings Vi-
sualization, 2001. VIS 01., pages 29-538. IEEE, 2001. 5

	. Review
	. Summary

	. Archaeologist
	. Code and experiments
	. Code analysis
	. Experiments
	Depth distortion regularization
	Training and rendering resolution

	. Projeto de doutorado
	. 2D Half-Gaussian Splatting
	. Mixed 2-3D Gaussian Splatting

	. Conclusions

