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1. Review

The volumetric scene representation using 3D Gaussian
Splatting (3DGS) presented by Kerbl et. al in 2023 demon-
strated impressive novel view synthesis (NVS) results,
achieving high fidelity and rendering eficiency. Following
this work, different applications, extensions, and improve-
ments have been developed. Based on signal processing
theory, Mip-Splatting proposes the use of convolutions to
reduce aliasing. First, by limiting the maximum frequency
of the Gaussians in 3D space; then by using a 2D filter to
reduce mip-like alias.

1.1. Abstract

In the context of 3D Gaussian Splatting (3DGS), Mip-
Splatting addresses the aliasing problem encountered when
applying solutions based on 3DGS. Specifically, the paper
tackles artifacts that arise when testing a scene at sampling
frequencies different from those used during the training
phase. These effects become particularly evident when per-
forming zoom-in or zoom-out operations, either by chang-
ing the focal length or by altering the camera position in the
scene.

The proposed solution is rooted in sampling theory,
primarily the Nyquist-Shannon sampling theorem, which
states that the sampling frequency must be at least twice
the maximum frequency of the continuous signal to be ac-
curately represented. The authors offer solutions for two
types of problem: zoom-in and zoom-out.

They observed that performing a zoom-in, i.e., increas-
ing the sampling frequency, results in the appearance of
several high-frequency Gaussians. To prevent the creation
of such high-frequency components, the authors propose
limiting the maximum frequency of the Gaussians created

based on the frequency and distance of the training images.
The camera configuration that enables the best representa-
tion of each Gaussian, i.e. that best samples the primitive,
determines this limit. By applying a low-pass Gaussian con-
volution filter to each object in the 3D space, the high fre-
quencies are removed according to the requirements of each
Gaussian. Since the convolution of two Gaussians results in
a new Gaussian, the only effect of this filtering is the re-
duction of frequency. In addition, such operations create
negligible computational overhead.

On the other hand, zoom-out introduces artifacts mainly
due to the dilation operation, which was not discussed in
the original 3DGS paper. This procedure alters the distribu-
tion of Gaussians in the screen space, making them appear
larger in the case of zoom-out and smaller when zooming
in. The authors propose replacing this manipulation with
the application of a 2D convolution that approximates the
light integration in physical image capture. To achieve this,
they used a low-pass Gaussian filter, with the scale of the
filter set to cover the area of a single pixel in screen space.

Experiments conducted under various conditions
demonstrate the effectiveness of the proposed changes
compared to the original 3DGS implementation and other
antialiasing techniques, as well as rendering methods based
on NeRFs. During the tests, different evaluation strategies
were used, with training conducted at one or multiple
resolutions (frequencies), depending on the type of artifact
under analysis. According to the results, the authors’
approach outperforms the other techniques in most cases.
Ablation studies in the supplementary material imply that
the original 3DGS would not work without the (flawed)
dilation operation.

1



Figure 1. 3D Gaussian Splatting renders images by representing 3D Objects as 3D Gaussians which are projected onto the image plane
followed by 2D Dilation in screen space as shown in (a). The method’s intrinsic shrinkage bias leads to degenerate 3D Gaussians exceed
sampling limit as illustrated by the δ function in (b) while rendering similarly to 2D due to the dilation operation. However, when changing
the sampling rate (via the focal length or camera distance), we observe strong dilation effects (c) and high frequency artifacts (d).

1.2. Positive Aspects

• Proposals are grounded in signal processing theory;
specifically, the Nyquist-Shannon theorem.

• Simple modifications that lead to significant improve-
ments in results compared to the original method, with
negligible processing overhead.

• Identification of the dilation operation, not mentioned in
the original 3DGS paper, which introduces artifacts.

• Extensive experimentation covering various aspects of the
original method and the proposed changes.

1.3. Negative Aspects

• Lack of explanation for the parameterization of the 3D
filter.

• Little description of multi-scale training technique.
• Typos in the abstract and supplementary material.
• Introduction of focal length as an input parameter.

1.4. Evaluation

The authors propose a well-founded improvement to the
original method that does not introduce significant render-
ing overhead. Their work is validated using standard bench-
mark datasets and show state-of-the-art results.

Overall rating: accept

2. Archeologist

2.1. EWA Splatting: The Foundations of Prefilter-
ing

EWA Splatting method was one of the precursors to most
modern volumetric rendering techniques, including Mip-
Splatting. EWA Splatting used pre-filtering with Elliptical
Gaussian Kernels to create smooth and continuous projec-
tions. It is very useful in the case of rendering of clouds
and medical data, which do not have well-defined bound-
aries. The innovation of low-pass filtering before sampling
greatly reduced aliasing by eliminating high-frequency ar-
tifacts. However, one big limitation with EWA Splatting
was its smoothing, which was limited to just 2D. Indeed,
this process eventually drives inaccuracies into the associ-
ated depth control mechanism and subsequently generates
imprecise overlaps, or occlusions. On its part, the MIP-
Splatting novel rendering technique transitions the associ-
ated operation into 3D in pursuit of increased precision as
well as adaptability during depth changes.

2.2. Mip-NeRF: Bridging Neural Rendering and
Mip-Splatting

Mip-NeRF introduced the concept of prefiltering into the
domain of NeRFs and further influenced the multiscale de-
sign of Mip-Splatting. While traditional NeRF relies on
one-dimensional Ray Marching, Mip-NeRF pioneered cone
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tracing to treat rays as cones that expand through 3D space.
This increased the capability for handling high-frequency
regions by adaptively smoothing textures and edges. Be-
sides, the representation of points as continuous Gaussian
distributions across multiple scales using the method known
as Integrated Positional Encoding (IPE) influenced the di-
rect multiscale smoothing approach of Mip-Splatting. Thus,
adaptive sampling and representation across scales are the
basic concepts that shaped Mip-Splatting in its development
for dynamically balancing the preservation of fine details
with efficient rendering across various zoom levels.

2.3. Mipmap-GS: Addressing Mip-Splatting’s
Early Limitations

Mipmap-GS resolved the most important key challenges in
Mip-Splatting’s initial implementations: fixed-size Gaus-
sian splats. With the deformable splats, it could let the splats
adapt dynamically according to zoom and resolution from
the viewer in order not to lose detail after zoom-ins and
avoid aliasing during zoom-outs. An adaptive mipmapping
system integrated further improved efficiency and quality
of Mip-Splatting where precomputed Gaussians at multiple
scales have their choice based on distance from the camera.
Moreover, the technique by Mipmap-GS enables it inher-
ently to generate scale-independent pseudo-ground truths in
real time without human edits. These works thus refined
Mip-Splatting to offer more flexibility with increased preci-
sion and artifact-free visuals.

2.4. Analytic Splatting: Pushing the Boundaries of
Accuracy

Analytic Splatting introduced a new dimension in accuracy
to volumetric rendering, replacing discrete sampling with
exact analytical computation. This is accomplished by com-
puting the complete Gaussian integral for every pixel with-
out approximating the contribution of each splat by sam-
pled points. Since this technique does not have the possible
sources of sampling error, it manages to preserve a level
of detail without artifacts, especially accentuated on highly
complex textures or small objects. Very computationally
expensive, although a set of proposed optimizations made
this technique viable for interactive rendering. These ad-
vances overcame most of the important limitations of early
Mip-Splatting methods: they provided high-fidelity results,
while still enabling real-time performance. Thereby, An-
alytic Splatting became one of the milestones for the ex-
tension of capabilities of Mip-Splatting toward sharper and
more accurate renderings.

3. Code and experiments

• Evaluate the reproducibility of the method

An example of improvement would be to optimize the in-
stallation of packages with pip. When we implemented the
code we had problems with !pip install -r requirements.txt
The list of libraries contained there could already be present
at the beginning of the code for automatic installation when
starting to run it.

Another problem was with the management of files and
folders, one of the main reasons is that the two datasets to-
gether were more than 12GB, so we had to choose just one
image to generate the 3D visualization, since if we used
both datasets it would consume almost the entire memory
of our Google Drive. The organization of the dataset folder
was very important because we had initial difficulties in
the code with an error in the directory path. We suggest
adding checks to ensure the dataset directory is configured
correctly before extracting, removing data, or running the
test environment.

The results obtained by viewing the .PLY file with the
image generated within the viewer provided by the authors
were not very expressive. The generated image is not clear
and full of aliasing artifacts, presenting blurs and shadows.
In the report’s attachment we include two images to clarify
the result, one generated by the authors of the paper and the
other generated by the hacker.

Think about other experiments

To add something new to the provided code, we can
implement a 3D visualization of the processed scenes, such
as generating a .PLY (Polygonal Mesh) file and viewing it
in a library such as Open 3D. If the code is running locally,
Open 3D provides an interactive window to explore the
data. While in Google Colab it is possible to generate the
3D visualization image itself for analysis. In both cases, it
would not be necessary to use the viewer provided by the
authors of the paper.

Could the work be reproduced by one or more graduate stu-
dents?

It is clear that the work cannot be reproduced by one
or more graduate students. Firstly because the code and
its datasets are very heavy, requiring all of them on a GPU
with more than 20GB and having plenty of storage space
locally or in the cloud because the two datasets together are
more than 12GB. Furthermore, the code has many errors
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that need to be corrected and its test environment takes
more than 3 hours to run and generate the .PLY file with
the image that will be viewed in 3D.

Compare the formulas implemented in the code with the
equations in the paper

In general, the important details of algorithms and sys-
tems are discussed adequately. Below we list two formulas
implemented in the code and their related equations in the
paper with the aim of showing how the mathematics behind
the final result obtained works.

- 3D Gaussian Splatting: The formula below demon-
strates how the geometry of each scaled 3D Gaussian Gk
is parametrized by an opacity (scale) αk ∈ [0, 1], center pk
∈ R3x1 and covariance matrix

∑
κ ∈ R3x3

- 3D Smoothing: By employing 3D Gaussian smoothing,
they ensure that the highest frequency component of any
Gaussian does not exceed half of its maximal sampling rate
for at least one camera. Given the maximal sampling rate v̂k
for a primitive, they aim to constrain the maximal frequency
of the 3D representation. This is achieved by applying a
Gaussian low-pass filter Glow to each 3D Gaussian primitive
Gκ before projecting it onto screen space.

This operation is efficient as convolving two Gaussians
with covariance matrices

∑
1 and

∑
2 results in another

Gaussian with variance
∑

1 +
∑

2. Hence,

4. Doctorate Project

The Mip-Splatting method uses a 2D Mip filter, inspired
by mipmap, to reduce dilation and erosion in images when
zoomed out and zoomed in, respectively.

The proposed PhD student project would be about try-
ing to apply the idea behind this pyramidal structure to
3D Gaussians. In other words, instead of constructing the
scene’s Gaussians once and using that construction to ren-
der the pixels, we construct the scene’s Gaussians several
times, each representing a different image quality.

The reason for doing this would be that when rendering
the image, we would render the parts closest to the cam-
era with the scene with high quality (which would have
more Gaussians) and the parts furthest from the camera with
the scene with less quality (which would have fewer Gaus-
sians). In this way, we could generate images of a scene
with higher quality, without using a large number of Gaus-
sians on the entire scene at once.

5. Conclusions

The 3D Gaussian Splatting method, while impressive in
novel view synthesis, suffers from artifacts when changing
the sampling rate. This is due to a lack of 3D frequency
constraints and the use of a 2D dilation filter.

To address this, the paper introduces a 3D smoothing fil-
ter that constrains the size of 3D Gaussian primitives based
on the maximum sampling frequency, eliminating high-
frequency artifacts during zooming. Additionally, the au-
thors replace 2D dilation with a 2D Mip filter, which simu-
lates a 2D box filter, mitigating aliasing and dilation issues.

Their evaluation, including training on single-scale im-
ages and testing on multiple scales, confirms the effective-
ness of our approach.

6. Attachments (Hacker)

Figure 2. Our .PLY generated image viewer

Figure 3. 3D Image generated by the authors
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