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1. Introduction

New York Institute of Technolog

We follow several uses for the gaussian bell curve on a quick romp through pro-
t

w
bability, statistics, combinatorics, signal processing, and computer graphics. Since i

ould be impossible in a paper this size to give introductions to all of these fields or
-

l
to treat each of them rigorously, we will assume the reader has a certain level of fami
iarity with the subjects and attempt only to show some of the interdisciplinary ties. In

n
w
particular, we discuss a simple piecewise polynomial approximation to the gaussia

ith applications in digital image filtering, interpolation, antialiasing, splines, random
o

c
number generation, and blobby modeling. All this provides a convenient excuse t
ram as many impressive-looking equations onto each page as possible.

2. Gaussians in Probability and Statistics

The ‘‘bell curve’’

e −x 2

d
d
was first discussed in the context of probability by Abraham De Moivre in 1733 an
eveloped independently later in the century by Pierre Laplace and Karl Friedrich

n
c
Gauss [Schaaf64a] . The curve is usually attributed to Gauss, who discovered it i
onnection with his work in surveying and astronomy. Gauss noticed that precise

f
d
quantitative measurements, such as the locations of stars in the sky or measurements o
istances, vary according to a hump-shaped probability distribution†. More precisely,

d
the measurements center around a mean value m , and the probability of a given value
ecreases rapidly as the value deviates above or below the mean. The uncertainty of

c
the measurement (the width of the hump) is the standard deviation σ, which is often
alled the root mean square error in engineering.
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Figure 1. A gaussian with mean m and standard devation σ.

nMany empirically measured probability distributions approximate the functio

g (m ,σ,x ) =
σ 2π
h 1hhhhe

hhhhhhh)(x −m
σ

√ddd

−
2

2

2

s

f

which is called the normal distribution of errors or just the gaussian. Note that thi

unction’s integral, g (m ,σ,t )dt , is 1, a requirement of all probability distributions.
+∞

∞−
∫

Most of the area under the curve is close to the mean, in fact 68.3% is within ±σ of

g
the mean, 95.5% is within ±2σ, and 99.7% is within ±3σ. The inflection points of the

aussian are at x ±σ. When normalized to have mean 0 and standard deviation 1, one
gets the standard normal distribution:

g (0,1,x ) = nor(x ) =
2π

h 1hhhe
hhhx

2

√ddd

−
2

:in terms of which the general gaussian probability distribution can be expressed

g (m ,σ,x ) =
σ
1hhnor(

σ
x −mhhhhh)

o
n

Empirical measurements such as astronomical observations are subject t
umerous sources of noise, for example the vibrations of the molecules in the measur-

-
b
ing instrument. Why a multitude of small arbitrary errors results in the normal distri
ution of errors can be explained using the methods of random variables.

r
t

In statistics, any uncertain measurement (such as the position of a single atom o
he azimuth of a telescope) is called a random variable. Random variables are vari-

b
ables which have a probability distribution rather than a single value. We will use
oldface to set them apart. The probability that random variable X has value x is

h

written:

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

† Clarification of terminology: Sometimes the term probability distribution is used for the integral of probability density but
here we take the former to be synonymous with the latter.
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X )

I

Prob(X=x ) = f (x

ntuitively, X gives a different value x every time it is ‘‘measured’’, but as the
n

i
umber of samples grows, the histogram of measurements approaches the probability

-distribution f . The mean or expectation of a random variable is defined like the cenX
troid or first moment in physics:

m (X) = E (X) = xf (x )dx
+∞

X
∞−
∫

:and the variance, which is the square of the standard deviation, is

where E (X ) = x f (x )dx

σ (X) = E (X )−E (X)22 2

X

+∞
2

∞

2

−
∫

f
g
Using these definitions, it’s easy to verify that the mean and standard deviation o

(m ,σ,x ) are m and σ.

The continuous definitions of mean and variance above are very similar to the
more familiar discrete ones:

m = xd =
n
1hh x σ = E

I
L(X−E (X))

M
O =

n
1hh (x −xd)2

n

i
1

n

i
2 2

i =1i =
Σ Σ

w
s
which can be used to compute the approximate mean and variance when only a fe
ample values x for i =1,2,...,n of a random variable are known.

A
i

less well-known, but handier, formula for variance is:

O
J
M

hhhhxhhhhh −
I
J
L n

x
σ = E (X )−E (X) =

n
2 2 2 i

2
i

2Σ Σ

.which is useful for on-line calculation, since it entails only one pass over the data

What will be the combined influence of many random variables, such as the

i
vibrating atoms in Gauss’ telescope? Let’s try adding two of them together. When
ndependent random variables X and Y are added, the probability that the random vari-

Y
able for their sum Z=X+Y has value z is the sum of the probabilities that X=x and

=y for all values of x and y that add to z :

xProb(Z=z ) = f (z ) = f (x ) f (z −x )dZ
−∞

+∞

X Y

w Z X Y

∫

hich is just convolution: f = f *f (the ‘*’ denotes convolution). So addition of
-

t
independent random variables corresponds to convolution of their probability dis
ributions.

From here, it is easy to verify that when independent random variables are added,
their means and variances add: E (X+Y)=E (X)+E (Y) and σ (X+Y)=σ (X)+σ (Y). Put2 2 2

e
s
another way, the mean of the sum is the sum of the means and the variance of th
um is the sum of the variances.
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If a random variable is added to itself n times, the mean and variance grow
e

t
linearly. But what happens to the shape of the distribution? In figure 3 we can se
hat self-convolution of box-shaped distributions become smoother, broader, and more

t
gaussian shaped as the number of convolutions increases. The Central Limit Theorem
ells us that this is true for almost any probability distribution† [Baclawski77a] :

-
m
The sum of n arbitrary independent random variables approaches a nor

al distribution as n →∞.

Unfortunately, a proof of this theorem is one of the few things beyond the scope of
this paper.

The Central Limit Theorem explains why the normal distribution is so commonly
,

r
observed: it is a mathematical consequence of having numerous sources of noise
egardless of each one’s character. In the words of Henri Poincare [Newman56a] :

v
We need know only one thing: that the errors are very numerous, that they are
ery slight, that each may be as well negative as positive. What is the curve

s
s
of probability of each of them? We do not know; we only suppose that it i
ymmetric. We prove then that the resultant error will follow Gauss’ law, and

.
H
this resulting law is independent of the particular laws which we do not know

ere again the simplicity of the result is born of the very complexity of the

T

data.

he entropy of a continuous distribution can be defined as:

H (X) = − f (x )log f (x )dx
−∞

+∞

X 2 X

t

∫

hus yielding a quantitative measure of a random variable’s information content or

g
uncertainty. It turns out that, of all distributions having a given standard deviation, the
aussian has maximum entropy [Baclawski77a] .

3. Gaussians in Combinatorics

The simplest non-trivial random variable is an event which has only two possible
s

r
outcomes, like flipping a coin. We can represent heads as X=1 and tails as X=0. Thi
andom variable’s distribution function will be zero except for two spikes at 0 and 1.

b
Let Prob(heads )=p and Prob(tails )=q where p +q =1. If p ≠1/2 then the coin is said to

e biased. If we flip this coin n times and add the random variables, the resulting ran-
r

n
dom variable is called the Bernoulli process. The probability of getting k heads afte

flips has the binomial distribution:

Prob(X=k ) = I
Lk
n M

Op q k

h

Which is a term from the binomial expansion:

k n −

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

† The Central Limit Theorem only applies when the distribution has finite mean and variance.
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n Σ
k =0

n
k n −kn M

Op qk

T

(p +q ) = I
L

he binomial coefficients
I
Lk
n M

O are better known as Pascal’s triangle. Since the Ber-

r
noulli process is the sum of many random variables, by the central limit theorem, the
ows of Pascal’s triangle must approach a gaussian as n →∞ [Feynman63a] .

h

t

Can we find a formula relating the two? We will try to find A , m , and σ suc

hat Ag (m ,σ,k ) ∼∼
I
Lk
n M

O. Taking a fair coin p =q =1/2, it’s clear that the average number

of heads after n tosses will be m =n /2. Next, we match integrals:

Ag (m ,σ,k )dk = A = I
Lk
n M

O = 2
−
∫ Σ
∞

+∞

k =0

n
n

n
n √dddd ,hh

M
J
O

2πn
n
e

t

So A =2 . Finally, to match peak values, we use Stirling’s formula, n ! ∼∼
I
J
L

o approximate the binomial coefficients. We find that

hhhhhhhhhn
)

hhhhhhhhhhh
2πk (n −k

n

)
hhhhhhhhh ∼∼

k (n −k

!n
!

n M
O =

k !(n −k )k
I
L k n −k

n d
Equating peak values:

√ddd

2 g (m ,σ,m ) =
σ 2π
h 2hhhh =

I
J
J
L 2
nhh
n M

J
J
O

∼∼
2πn

h2hhhhhn
n n +1

√ddd √dddd

√dd
.hhhn

T

and the standard deviation is σ=
2

herefore,

I
Lk
n M

O ∼∼ 2 g (
2
nhh ,

2
nhhh ,k ) =

2πn
h2hhhhhen √dd

√dddd

n +1 −
n

2(k −
2
nhh)

hhhhhhhh
2

n f
s

Expansion of the binomial series (p +q ) is analogous to convolution o
equences, since multiplication of power series involves convolution of their

coefficients
I
J
L

a x
M
J
O

I
J
L

b x
M
J
O

= x a b i

k

i k −
0

∞
k

i =0

∞
j

j

k =0

∞
i

i

j =0i =
Σ Σ Σ Σ

ji r
c
The sum on the far right is the discrete convolution of a and b . As a notation fo
onvolution of sequences, we can write [1, 1] = [1, 1]* [1, 1] = [1, 2, 1] and

[ * 3 *n

* 2

1, 1] = [1, 3, 3, 1], etc, where f means f *f *f *...*f (n times). Convolution
of sequences is equivalent to multiplication of polynomials.

Using the impulse function δ(t ), which is roughly defined as:
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∫
+∞

∞−
1

t =0
where δ(t )dt =0

t

δ(t ) =
I
K
L0
∞

t ≠

o relate the continuous and the discrete, we can write the probability distribution for n
coin tosses as

(p δ(x )+q δ(x −1)) n

In this notation,

*

(p δ(x )+q δ(x −1)) = I
Lk
n M

Op q δ(x −k )
n

k n −k

0

*n

k =
Σ

Or, in sequence notation,

[p , q ] = [
I
Lk
n M

Op q for k =0,1,...,n ]

W

*n k n −k

e can relate this distribution to the gaussian another way by making use of the addi-
-

a
tive properties of mean and variance. Using the discrete definitions of mean and vari
nce, we find m ([p , q ])=q and σ ([p , q ])=pq for one toss, so m ([p , q ] )=nq and
2

2 *n

*nσ ([p , q ] )=npq for n tosses. Therefore, the gaussian approximation to a biased
binomial distribution is:

I
Lk
n M

Op q = g (nq , npq ,k ) =
2πnpq

h 1hhhhhhhek √dddd
√dddddd

n −k
−

2npq
(k −nq )hhhhhhhh

2

.n M
O derived earlier [Baclawski77a]kwhich verifies the approximation to

I
L

Many other stochastic processes such as the random walk or the Brownian motion
n

[
of molecules in a gas obey binomial or normal distributions as discussed i
Feynman63a] .

4. Gaussians in Signal Processing

The Fourier transform represents an arbitrary function using sums of sine waves

d
of different frequencies [Bracewell78a] . It transforms functions in the spatial or time
omain f (t ) into the frequency domain F (ω) and vice versa. If f (t ) and F (ω) are

e
s
such a transform pair, we write f (t ) ←→ F (ω). Before proceeding any farther, som
ynonyms:

spectrum = frequency response

fi
filter (the verb) = convolve

lter (the noun) = kernel = window
n

(

= impulse response = point spread functio

It’s not surprising that there are so many names for each concept considering how
d

t
many branches of science and engineering have embraced the Fourier transform an
he theory of linear systems.)

One of the Fourier transform’s most interesting properties is that convolution in
done domain corresponds to multiplication in the other: f *g (t ) ←→ FG (ω) an

6



f g (t ) ←→ F*G (ω).

The Fourier transform also tells us that a finite spatial function (a kernel which is
-

q
zero outside some finite domain) has an infinite spectrum (contains arbitrarily high fre
uencies). For example, the Fourier transform of the common box window (Fourier

window)

box (t ) =
I
K
L0
1

e t e ≥1/2
e t e <1/2

-hhhhhhhh . This and several other transform pairs are pic
)sin (πω

ω
t

is the sinc function: sinc (ω)=
π

ured below.
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The envelope of sinc is like 1/ω, which decays very slowly. Slow decay implies that

F
the box filter lets through a lot of high frequencies. Conversely, since the inverse

ourier transform is almost the same as the forward transform, a box in the frequency
domain (the ideal low pass filter), transforms to sinc in the spatial domain.

The ideal low pass filter is very desirable when reconstructing a sampled signal,

u
but unfortunately its infinitely wide kernel makes it impractical. In practice, we must
se finite impulse response (FIR) filters, whose frequency responses are necessarily

n
t
less than ideal [Whitted81a] . When doing convolution one must trade off betwee
he slowness of a wide kernel and the poor quality (excessive high frequencies) of a

e
i
narrow one. At one extreme is the low cost, low quality box and at the other extrem
s the high cost, high quality sinc. The gaussian provides a happy compromise

e
k
between the two. In fact, the Fourier transform of a gaussian is a gaussian, so th
ernel and its spectrum have similar shape. The gaussian decays quickly so it can be

e
g
truncated with less error than a sinc. To truncate g (m ,σ,x ) at threshold T , we equat

and T and solve for x , yielding: x =m ±σ√dddddddddddd−2log(T 2πσ).√dddd

a
p

A gaussian is a less-than-ideal low pass filter, but it comes close while retaining
ractically finite kernel. Many of true FIR filters discussed in the literature (such as

r
f
the Hanning, Hamming, Blackman, and Kaiser windows [Oppenheim75a] ) have bette
requency responses than the gaussian, but they lack its simplicity.

Figure 3. The box kernels for n=1-4.*n
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n5. Polynomial Approximations to the Gaussia

We can generate piecewise polynomial approximations to the gaussian by repeat-
edly convolving box windows. We denote the resulting function box . A single box*n

t
x
(often called a ‘‘sample and hold’’ in electrical engineering) has discontinuities a

=±1/2. Two boxes convolved make a triangular window (Bartlett window), which
a

p
has two linear intervals with continuity of position. Three boxes convolved make
arabolic window, which has three quadratic intervals and continuity of first derivative.

c
Four boxes convolved are called a Parzen window, which has four cubic intervals and
ontinuity of the second derivative. When n boxes are convolved, the result will have

c
n intervals each a degree n −1 polynomial, a support (width) of n at the base, and
ontinuity of its n −2 nd derivative. Above n =3, the shape is almost indistinguishable

e
o
from a gaussian. As n increases, both the kernel and its Fourier transform converg

n the gaussian. The formulas are given below, and graphs are shown in figure 3.

hh1
2

hh<x <1
2

−

hh1
2

I
J
K
J
L

0

1

e x e ≥

0−1≤x ≤
10≤x ≤
1

1+x

e x e ≥
x1−

0

I
J
K
J
L

hh1
2

hh≤x ≤−3
2

−

hh1
2

hh≤x ≤1
2

−

hh3
2

hh≤x ≤1
2

hh3
2

hh)

e x e ≥

3
2

hh(x +1
2

xhh−3
4

)hh3
2

hh(x −1
2

0

I
J
J
J
J
K
J
J
J
J
L

1−2≤x ≤−

0−1≤x ≤

10≤x ≤

21≤x ≤

2

hhhhhhh

e x e ≥

)(2+x
6

hhhhhhhhhhx4−6x −3
6

hhhhhhhhhhx4−6x +3
6

hhhhhhh)(2−x
6
0

box (x ) =

I
J
J
J
J
J
K
J
J
J
J
J
L

=box (x )

=box (x )

=

BOX

box (x )

TBARTLET

CPARABOLI

N

n =1

PARZE

2n =

3n =

4n = * 4

* 3

* 2

3

2 3

2 3

3

2

2

2
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There does not seem to be a precise relationship between these functions and
ePascal’s triangle. However, the box functions relate quite nicely to splines; as w*n

.

6

shall see, they are identical to the uniform B-spline basis functions

. Gaussians in Image Processing

The gaussian has a number of properties which make it especially attractive for

c
image processing: it is a positive kernel, in two or more dimensions it is separable and
ircularly symmetric, and the polynomial approximations to it admit a very efficient

gaussian low pass filter (blur).

Images are represented by two-dimensional intensity functions which are always

g
non-negative. Therefore, convolution with negative-lobed kernels such as sinc can
enerate unrealizable negative intensities. This problem never occurs with gaussian

l
i
filters, however, since the gaussian is a positive function. This suggests severa
nteresting questions:

(a) Is the gaussian the ‘‘best’’ low pass filter with a positive kernel?

e(b) Probability distributions and non-negative filter kernels are both non-negativ
functions which integrate to 1. Is there a fundamental similarity between them?

s
b

Perhaps its most attractive feature for image processing is that the gaussian i
oth separable and circularly symmetric. A 2-dimensional function f (x ,y ) is said to

s
p
be separable when it can be written as g (x )h (y ). The circularly symmetric gaussian i
roven separable by the following:

e = e = e e y−r −x −y −x −2 2 2 2 2

o
b
Separable kernels are very desirable because they allow 2-dimensional convolution t
e decomposed into two 1-dimensional convolutions. Straightforward convolution of a

W ×W kernel with an M ×N image requires W MN multiply-adds, but exploiting2

s 2eparability, the cost is reduced to W (M +N ). This can make the difference between
-

a
practical and impractical computations. For example, on a VAX 11/780, a multiply
dd takes about 15 µsec, so convolution of a 500x500 image with a 35x35 kernel

v
would take over an hour with 2-D convolution, but only 4 minutes with two 1-D con-
olutions. While straightforward 2-D convolution is fastest for small kernels (say

e
w
3×3), and separable convolution is good for medium-size kernels, a third alternativ

hich is best for large, non-separable kernels is Fourier convolution: transformation of
,

f
image and kernel into the frequency domain by FFT, multiplication of the two spectra
ollowed by an inverse FFT.

A variation on the gaussian filter, the sharpened gaussian, has been proposed for

t
image magnification [Schreiber85a] . Its negative lobes give it better sharpness than
he gaussian without degrading the circular symmetry substantially.

-
m

Two ideas previously described, the separability of gaussians and their approxi
ation by box , can be combined to make an efficient low pass image filter algo-

r

*n

ithm, but further groundwork is needed before it can be explained.
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Recalling that addition of independent random variables is equivalent to convolu-
-

b
tion of their probability distributions, and that filter kernels are like probability distri
utions, we see that for two kernels f and g the mean of the convolution equals the

sum of the means:

m = m +mgf *g f

:and the variance of the convolution equals the sum of the variances

σ = σ +σ22
f
2

gg

A

f *

lso, the Central Limit Theorem tells us that the convolution of n arbitrary kernels

d
approaches a gaussian as n →∞, whose mean grows proportional to n and standard
eviation grows proportional to n . The standard deviation of the continuous function

√
√dd

ddddd*nbox is n /12. These powerful laws help us compare box and gaussian low pass
filters.

The low pass filters box can be applied by either explicitly convolving the sig-*n

*n e
s
nal with a box n times or by pre-computing box and then convolving it with th
ignal once. An example of the first method is the repeated use of the bluriiii program

liiiiii convolves the image with a wide box kernem

m

on an image. The command blur

×m pixels in size. A discrete box with m terms, [
m
1hhh ,

m
1hhh , . . . ,

m
1hhh] , which is*n

niiiiii, has standard deviatiomthe kernel resulting from n applications of blur

12
n (m −1)hhhhhhhh . This relation allows us to say, for example, that three passes of blur miiiiii√

2dddd
have nearly the same effect as a gaussian blur with standard deviation m /2 such as
iiiiiii.mgauss

Normally, convolution with an m ×m kernel has cost proportional to m . The2

p
[
constant of proportionality can be made quite small by simplifying the inner loo
Greene85a] but straightforward 2-D convolution is still slow for large m . The bluriiii

s
program takes advantage of the box window to make its cost independent of window
ize. It exploits the fact that the box window is an unweighted average which can be

-
n
computed incrementally. The summed area table [Crow84a] uses a similar tech
ique, performing box window filtering on texture maps with constant cost by pre-

integrating the table. Perlin has generalized this quite elegantly for the box filters*n

r
t
[Perlin85a] . We can understand his method given two more facts about Fourie
ransforms.

Differentiation in the spatial domain corresponds to multiplication by i ω in the

I

frequency domain.

ntegration in the spatial domain corresponds to division by i ω in the frequen-
cy domain.

11



We are now ready to understand Perlin’s identity† (which should be read in clockwise
order):

R
Q f (t )dt

H
P* (box′

f

)

(t )* box

←→

←→

(i ω)

F (ω)hhhhhh[i ω sinc(ω)]

F (ω)sinc (ω)

n

∫ n *n

*n

n
n

*n

n

n
t
This identity says that another way to convolve with box is to integrate the signal
imes as a pre-process, and then convolve with (box′) . But box′is the difference of*n

1
s
two impulse functions (figure 4) – a trivial convolution filter, which generates n +
ample points when convolved with itself n times. (Note that the Fourier transforms

s
here are used only for proof, not in the implementation. Also note that in practice the
ignal f and the box window are discrete, not continuous.)

:Figure 4. The derivative of box is two impulse functions
δ(x +.5)−δ(x −.5).

-
m

Perlin’s filter, then, is a technique for convolving a 1-D signal with an approxi
ately gaussian kernel with cost proportional to the order of the approximation, but

independent of the size of the kernel. For image (2-D) filtering, there are (n +1) sam-2

s
m
ple points, so the cost rises like the square of the order of approximation. Perlin’

ethod is equivalent to the summed area table if n =1, but for n =2 it gives Bartlett

l
filtering and for n =3 it gives parabolic filtering, which is very close to gaussian. Per-
in calls it a selective image filter because it is useful for spatially variant filters. (If it

iiiii are, we’d do better forsiiii and gausr
l
were only good for space invariant filters, as blu
arge kernels by using an FFT.) Unfortunately, Perlin’s technique does not allow filter-

[
ing of arbitrarily oriented ellipses, which is required for good texture filtering
Greene85a] .

Other disadvantages of the method are the storage and numerical problems result-
ring from the large dynamic range. For a 2 ×2 monochrome image with b bits per r

b2nr + ,
a
pixel, 2-D integration n times can result in numbers as large as 2 . For example
n 8-bit 512x512 image has r =9 and b =8, so 26 bits are required for n =1 (summed

h
area tables), 44 bits are needed for n =2, and 62 bits for n =3.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

.† see also fig. 7.2 of [Bracewell78a]
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n7. Gaussians in Signal Reconstruction and Spline Interpolatio

A very popular technique for smooth interpolation of data points is the spline: a
s

a
continuous, piecewise polynomial function. Generally, the higher degree polynomial
llow greater continuity at the knots between intervals but often introduce undesirable

r
s
ripples. They’re also computationally expensive. Consequently, the most popula
plines have low degree, often three.

When the data points are equally spaced, interpolation is analogous to reconstruc-

[
tion of a sampled signal as in signal processing. The Sampling Theorem
Bracewell78a] says that a function can be reconstructed exactly if the original signal

lhad no frequencies higher than half the rate at which it was sampled. Given a signa
f (x ) sampled at integer values of x , convolution with a continuous kernel h results in

:′the reconstructed signal f

f ′(x +t ) = f (x +i )h (t −i )
+∞

∞i =−
Σ

where t is a fractional offset between 0 and 1. Such a filter, which is analogous to a

a
weighted average of the sample values, is often needed in 2-D image processing when
n image is being scaled up or shifted by a fraction of a pixel [Greene85a] ,

[Smith83a] .

The ideal reconstruction kernel, the sinc, is not an FIR filter, as discussed earlier,

u
so the resulting infinite sum makes it computationally intractable. Reconstruction
sing an FIR filter results in a less-than-ideal frequency response which can cause

e
r
reconstruction errors called rastering, but this is unavoidable because the impuls
esponse and frequency response cannot both be finite.

t
w

For digital reconstruction of signals we desire kernels with small, finite suppor
hich are both computationally inexpensive and ‘‘good’’ low pass filters. We’ve

l
already seen how to generate piecewise polynomial approximations to a fairly good
ow pass filter: the gaussian. In the spline field these box kernels are very well

known [Gordon74a] , in fact:

*n

iiiiiiiiiiiiiiiiiiiiiiii

box = uniform B-spline*niiiiiiiiiiiiiiiiiiiiiiiic
c

c
c

T *nhe box filters have different meaning here than they did for the image blurring
t

c
application. Whereas for blurring the box was a wide, discrete signal, in the presen
ontext it is continuous and only one sample in width. Most of the terminology is

s
a
different as well: the filters are called splines rather than filters, the kernel polynomial
re called basis functions, and the sample points are called uniformly spaced knots.

t
o

The table below summarizes the properties and common names for the lowes
rder B-splines.
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
iorder deg filter name spline name interp continuityiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

n
n=1 0 Fourier, box point sampling yes none
=2 1 Bartlett linear interp. yes C (value)

1

0

)
n
n=3 2 parabolic quadratic B-spline no C (tangent
=4 3 Parzen cubic B-spline no C (curvature)2 i

c
c
c
c
c
cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc

c
c
c
c
c

cc
c
c
c
c
c

cc
c
c
c
c
c

cc
c
c
c
c
c

cc
c
c
c
c
c

cc
c
c
c
c
c

,
p
A graphical comparison of B-splines is shown in figure 5. We see that the first two
oint sampling and linear interpolation, interpolate the sample points while the higher

m
order B-splines do not. The quadratic B-spline does, however, always interpolate the

idpoints between samples.

When using the box kernels as basis functions it is best to reparameterize them*n

:as polynomials in the fractional offset t

f (x +t ) = f (x +i )h (t )
+∞

i
∞

n
i =−
Σ

i -
p
Except for n intervals centered on x +t , all of the basis functions h are 0, so the sup
ort of the spline is n samples.

In spline literature, it is customary to write the basis functions as n ×n matrices
rather than polynomials. The first four box / B-splines are listed below:*n

.Figure 5. Example B-splines of order 1-4
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order 1: point sampling:

f (x +t −1/2) = [1][1][ f (x )]

o

1

rder 2: linear interpolation:

P
J
Hf (x )

)
−1

0
1 H

J
P

R
J
Qf (x +11f (x +t ) = R

Qt 1
H
P

R
J
Q2

order 3: quadratic:

f (x +t −1/2) =
R
Qt t 1

H
P 2
1hh

R
J
J
Q 1
−2

1

1
2

−2

0
0
1 H

J
J
P

R
J
J
Qf (x +1)

f (x )
f (x −1) H

J
J
P

3
2

:order 4: cubic

f (x +t ) =
R
Qt t t 1

H
P 6
1hh

R
J
J
J
J
Q 1
−3

3
−1

4
0

−6
3

1
3
3

−3

0
0
0
1 H

J
J
J
J
P

R
J
J
J
J
Qf (x +2)
f (x +1)

f (x )
f (x −1) H

J
J
J
J
P

4
3 2

*n

p
The basis functions described by the matrices above are identical to the box

iecewise polynomial functions listed earlier except they’ve been reparameterized to
o

‘
the interval [0,1]. To interpolate a sampled function, the abscissa x′is broken int
‘integer’’ and ‘‘fractional’’ parts x and t , respectively. This is done differently for

even n and odd n :

for even n , x =int (x′), t =x′−x
2−x +1/′+1/2), t =x′

T

for odd n , x =int (x

hese formulas ensure that the sample points which are weighted together are the
.′nearest neighbors of x

B-splines have the property that any point on the spline lies within the convex
n

t
hull of the neighboring n knots [Gordon74a] . This is the case because all points o
he spline are a weighted average with positive weights of the knots in their support,

a
and all such points lie within the convex hull. The positivity of the basis functions is

result of the gaussian’s positivity.

Evaluation of the matrix products in the formulas above requires on the order of
-n multiplies and n adds†. If speed is a great concern, in many situations the n poly2 2

nomial evaluations can be done by table lookup, in which case the cost reduces to n
f

c
multiplies and n −1 adds. If the basis functions are in a table, however, the cost o
omputing them becomes irrelevant, so it pays to use the best low pass filter for a

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

† Actually, we can do quite a bit better than that: n =1 requires 0×, 0+, n =2 requires 1×, 2+, n =3 requires 6×, 6+, and n =4
requires 7×, 10+.
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given support, which is probably not an approximation to a gaussian. The cubic
s

[
Catmull-Rom basis is a popular alternative to the B-spline since it interpolate
Smith83a] .

The splines we’ve been discussing can be generalized to multidimensional lattices

r
of data points simply by repeated application. For instance, 2-D bilinear interpolation
equires 4 sample accesses and 3 linear interpolations (1 for each of the 2 rows and 1

s
a
between rows). Use of the parabolic spline in 3-D would require 27 sample accesse
nd 9+3+1=13 quadratic interpolations. In general, the d -dimensional spline requires

n samples and (n −1)/(n −1) n th order interpolations.d d

s8. Gaussian Random Number

Computer graphics and scientific programmers often need to generate pseudoran-
-

f
dom numbers with gaussian distributions. A simple way to do this is to sum n uni
orm random numbers. As we saw earlier, adding independent random variables is

-
d
analogous to convolving their distributions, so summing n uniform, independent ran
om numbers U each between 0 and 1 results in a box distribution, exactly. Sub-

t
i

*n

racting the mean and dividing by the standard deviation results in a standard normal
distribution:

if N =
n /12

U −n /2hhhhhhhhh then Prob(N=x ) ∼∼ nor(x )
Σ

√ddddd

n

i

Unfortunately, this method is only approximate, and will never generate arbitrarily
g

g
large numbers, as a true gaussian would. More accurate techniques for generatin
aussian random numbers are discussed in [Knuth69a] .

9. Gaussians in Quantum Mechanics

Heisenberg’s uncertainty principle says that a particle’s position x and its

a
momentum p cannot both be known with perfect certainty. Associated with x and p
re complex wave functions forming a Fourier transform pair whose magnitudes deter-

-
t
mine probability distributions for the two variables [Powell61a] . The standard devia
ions of these distributions, ∆x and ∆p , respectively, are used to quantify the uncer-

c
tainties. Heisenberg’s principle states that their product is greater than or equal to a
onstant:

∆x ∆p ≥
2
hhh

a
k
This is similar to the scaling property of the Fourier transform, which states that
ernel’s width is inversely proportional to the width of its spectrum. Heisenberg’s

l
o
relation is an equality only if the wave packet has gaussian shape [Feynman63a] . Al
ther distributions result in loss of information about position or momentum.
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10. Gaussians in Blobby Modeling

As an alternative to the usual ‘‘ball and stick’’ models of molecules, Blinn has

V
simulated 3-D gaussian electron density distributions in order to make pictures of the

an der Waals surfaces of molecules [Max83a] . The technique, usually called blobby
-

i
modeling, has proven useful for modeling many other things, especially metamorphos
ng, organic forms. The models are usually rendered using ray tracing, wherein inter-

d
section points are calculated between rays from the eye and the contour surfaces of the
istribution. Since the cross section of a gaussian hump is a gaussian curve, the den-

f
s
sity function along any ray is a superposition of gaussians. Unfortunately, the roots o
uch a function cannot be found analytically, so Blinn resorted to heuristics and

-numerical methods [Blinn82a] . If the box approximation is used, however, the dis* 3

a
[
tribution is piecewise quadratic, and roots can be found using the quadratic formul
Kawai85a] .
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