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Abstract

Since the launch of the Microsoft Kinect, scores of RGBD
datasets have been released. These have propelled ad-
vances in areas from reconstruction to gesture recognition.
In this paper we explore the field, reviewing datasets across
eight categories: semantics, object pose estimation, cam-
era tracking, scene reconstruction, object tracking, human
actions, faces and identification. By extracting relevant
information in each category we help researchers to find
appropriate data for their needs, and we consider which
datasets have succeeded in driving computer vision forward
and why.

Finally, we examine the future of RGBD datasets. We
identify key areas which are currently underexplored, and
suggest that future directions may include synthetic data
and dense reconstructions of static and dynamic scenes.

1. Introduction

Before the Microsoft Kinect was launched in November
2010, collecting images with a depth channel was a cum-
bersome and expensive task. Researchers built custom ac-
tive stereo setups [12] and made use of 3D scanners costing
tens of thousands of dollars [77, 19]. Many of these early
datasets captured static images of objects in isolation, as the
sensors used did not transport easily (Fig 1a).

Early Kinect datasets also focused on static images, of-
ten of single objects or small scenes. As the field matures
we see research being put to effect in creating larger and
more ambitious RGBD datasets, and the quantity released
each year shows no sign of decreasing (Figure 2). Semantic
labels have been propagated through videos [112], dense
reconstruction has been exploited to capture the surfaces
of whole objects [21] and generative scene algorithms have
been used to create plausible synthetic data [43]. We also
see new labels applied to existing data [41] and previous
releases being recompiled into new offerings [95].

In spite of the current availability of sensors, though,
collecting RGBD data is still not trivial. Researchers us-
ing the Kinect have built battery devices [93, 95], writ-

(a) Past

Before the Microsoft Kinect, most
depth datasets were small and cap-
tured in the laboratory.

Image from [77]

(b) Present

‘We now enjoy RGBD data from dy-
namic and static scenes from the
real world, with a range of labeling
and capture conditions.

Image from [93]

(c) Future

We can anticipate scans of static
and dynamic scenes as fused geom-
._J etry, exploiting improvements in re-
construction algorithms.
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Figure 1. The past, present and future of RGBD datasets.

ten drivers [95] and developed custom data formats [34].
Publicly available RGBD datasets can, at the most basic
level, remove the need to repeat data capture. More im-
portantly, they provide transparency in the presentation of
results and allow for scores to be compared on the same
data by different researchers. This in turn can drive com-
petition for better-performing algorithms. Finally, a dataset
can help draw research towards previously under-explored
directions.

Our primary contribution is to give a snapshot of pub-
lic RGBD datasets, allowing researchers to easily select
data appropriate for their needs (Section 2). We are more
comprehensive than earlier efforts, describing 101 datasets
compared with the 14 in [9], 19 in [42]" and the 44 action
datasets in [| 1 7]. We secondly identify areas where there is
opportunity for new data to facilitate novel areas of research
(Section 3). We hypothesize that we can expect datasets to
continue to move away from single images, to dense recon-
structions of static and dynamic scenes (Figure Ic).

1[42] references more than 19 datasets, but most are not RGBD
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Figure 2. Our estimate of the number of depth datasets released
each year, where projected releases in 2016 are shown as a dashed
line. The Kinect was first released in November 2010.

2. State-of-the-art in RGBD datasets

Here we review state-of-the-art datasets across eight cat-
egories. Some fall into more than one category, and the dif-
ference between categories depends as much on the labeling
as it does the image content.

We include datasets which have been captured with an
active capture devices such as time-of-flight or structured
light, but exclude data from passive stereo. We also exclude
Lidar datasets, focusing instead on data from the separate
world of commodity depth capture. Following the mantra
that ‘data is cheap, information is expensive’, we focus on
data which has some form of human labeling applied. We
exclude very small datasets, and those which have been pro-
duced mainly to demonstrate an acquisition method.

With these exceptions, we aim to be comprehensive and
correct. Please flag omissions and errors to m. firman@
cs.ucl.ac.uk so this document can be updated. We

also maintain a web-based version?.

We first look at datasets of objects in isolation, before
moving on to datasets for camera tracking, scene recon-
struction and then datasets where the pose of objects is to be
inferred. Semantic, and then tracking datasets come next,
before videos for action and gesture recognition. We fin-
ish with two more categories involving humans: faces and
identity recognition.

2.1. Objects in isolation

Following earlier stereo setups such as [79], RGBD
turntable datasets offer multiple unoccluded views of the
same object from different angles (Table 1).

The 2011 RGB-D Object Dataset [62] is a well-used
dataset with 300 objects, but does not contain accurate cam-
era poses. This was rectified by more recent datasets such
as BigBIRD [94]. While a smaller dataset, BigBIRD is cap-
tured with calibrated Kinects and DSLRs.

Turntable datasets have been exploited in ‘natural’
scenes for tasks such as object detection [63] and discov-
ery [31]. In many ways, though, they are limited by their
deviation from real-world data. Without occlusion, light-
ing changes or varying distances to objects these datasets
sit in a different domain to the real-world scenes which we
ultimately aim to understand.

Choi et al. [21] exploit improvements in camera tracking
to form a dataset of individual objects scanned in the real
world. With 10,000 items ranging in size from books to
cars, this is the largest dataset of real-life objects by two
orders of magnitude.

’http://www.michaelfirman.co.uk/RGBDdatasets/

Table 1. Datasets capturing single objects in isolation

Device? #objects Camera pose?® Year
RGBD Object Dataset [62] Kinect v1 300 - 11
KIT object database [54] Minolta Vi-900 and stereo pair >100 vV 12
A dataset of Kinect-based 3D scans [24] Kinect and Minolta Vi-900 59 vV 13
MV-RED [68] Kinect vl 505 - 14
BigBIRD dataset [94] Asus Xtion Pro, DSLR 125 v 14
YCB Object and Model Set®[15] Asus Xtion Pro, DSLR 88 vV 15
A large dataset of object scans [21] PrimeSense Carmine >10,000 v ’16

2 The Kinect v1, Asus Xtion Pro and PrimeSense Carmine have almost identical internals and can be considered to give equivalent data.
b = camera pose computed from RGBD data; v’ v'= camera pose from calibration system.

¢ Captured using the same turntable setup as the BigBIRD dataset.
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2.2. Camera tracking and scene reconstruction

Arguably some of the main advances brought by con-
sumer depth cameras have been in camera tracking and
dense reconstruction. Ground truth camera poses are nec-
essary to validate these algorithms, and these are difficult to
acquire as they require external hardware.

For camera tracking, the TUM benchmark [99] has
become a de-facto standard for evaluation, with ground
truth data from a motion tracking system and a range of
scenes and camera motions. We summarize this and similar
datasets in Table 2.

Some datasets [O1, 74, , 30] use manually verified
tracking from the Kinect itself as a ground truth pose. This
data is only suitable for tasks an order of magnitude harder
than tracking, such as camera relocalization [91] or voxel
occupancy prediction [30].

The difficulties involved with acquiring ground truth data
can be circumvented with synthetic data. The ICL-NUIM
dataset [44] provides 8 camera trajectories for two synthetic
indoor scenes, with camera paths taken from real hand-held
camera trajectories. While synthetic datasets may not be a
perfect representation of our world, they allow users to more
carefully control aspects such as motion blur and texture
levels to gain introspection into their algorithm (see Section
3.1 for further discussion).

Scene reconstruction is rarely evaluated directly, as
good camera tracking usually corresponds to good recon-
struction and camera paths are easier to obtain as ground
truth than dense surfaces. The synthetic ICL-NUIM dataset
[44] is suitable for reconstruction evaluation, especially

with additional camera paths provided by [20]. More re-
cently Wasenmiiller et al. [109] created a dataset contain-
ing ground truth camera motions and scene reconstructions
from a laser scanner. This is the only real-world dataset we
are aware of with both these data, though the scenes are less
diverse than [99].

Firman et al. [30] have a dataset of tabletop objects
scanned so every visible surface is observed in the recon-
struction. This provides ground truth for the task of estimat-
ing the unobserved voxel occupancy from a depth image.

2.3. Object pose estimation

The problem of inferring the 6-DoF pose of an object
is again a task which has been aided by the absolute scale
provided by depth cameras. Given a priori a 3D model of
an object, the aim is to find the transformation which best
aligns it into the scene. As with camera tracking it is hard to
get ground truth for this type of challenge, which requires
both a 3D model of the object and its pose in each image.
One solution has been to fix the target objects to a calibra-
tion board to allow for ground-truth tracking using the RGB
channels [45], while [87] and [85] have the poses manually
aligned.

These datasets, summarized in Table 3, feature tabletop-
sized objects. Acquiring 3D models, and ground truth
poses, for larger objects is difficult, so works that have at-
tempted this problem on a room scale typically find an al-
ternative method of evaluation or rely on human annotations
as an approximate ground truth [95]. Synthetic data could
be an avenue worth exploring here.

Table 2. Datasets for camera pose and scene reconstruction

Camera Ground truth

Device? # videos b Notes Year
pose surface
%RO]S 2011 Paper Kinect Dataset Kinect vi 77 o _ 11
KinectFusion for Ground Truth [74]  Kinect vl v v Lidar surface ground truth for 12
some scenes
TUM benchmark [99] Kinect v1 47 v - 12
Indoor RGB-D Dataset [88] Kinect v1 4 Va4 Collected from a robot 13
Microsoft 7-scenes [91] Kinect v1 >14 v Desilgned for camera relocal- 13
ization tasks
Robust Reconstruction Datasets Asus  Xtion ,
8 v - 13
[120] Pro
ICL-NUIM Dataset [44] Synthetic 8 s v Camera paths from [20] allow
for reconstruction evaluation
. Surface ground truth from ,
CoRBS Dataset [109] Kinect v2 20 al v fixed structured light scanner 16
Voxel Occupancy Prediction [30] Asus  Xtion 90 v Densely captures full visible ‘16
Pro surface

2 The Kinect v1, Asus Xtion Pro and PrimeSense Carmine have almost identical internals and can be considered to give equivalent data.
b = approximated camera pose from Kinect tracking. v’ v'= ground truth camera pose from external system.
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Laboratory scenarios, with a lim-
ited set of objects arranged by hand.

Image from [103]

Realism: @ @O
Real-world scenes, but with furni-

ture or objects artificially arranged.

Image from [62]

Realism: 00 @

Real-world scenes with no interfer-
ence by researchers.

Image from [93]

Figure 3. Semantic datasets described in Table 4 view the world
in various levels of ‘realism’, which we discretise into three cate-
gories.

2.4. Semantic labeling

Semantic labeling of images and videos moves us to a
more general understanding of the world. Datasets with la-
bels which could be used for semantic understanding are
listed in Table 4. We give an indication of the ‘realism’ of
each dataset as a score out of three, explained in Figure 3.
Note that a low score here does not correspond to a worse
or less useful dataset, as datasets with specially constructed
scenarios can be vital for proving concepts, and they can
often provide higher quality ground truth than fully natural
scenes.

The 1449-frame subset of the NYUv2 dataset [93] with
dense semantic labels has become a de-facto standard for in-
door scene labeling. The quality and variety of labels on this
real-world dataset has helped make it one of the most highly
used in the literature. The SUN3D dataset [112] counters
the single, static-frame modality of NYUv2 with object la-
bels propagated through Kinect videos. However, in spite
of their effort, there are only 8 annotated sequences.

‘We note that all these semantic datasets, even those with
videos, depict a static world. This contrasts with our dy-
namic world, an area which is explored by datasets designed
for tracking.

2.5. Tracking

Tracking datasets feature videos of dynamic worlds,
where the aim is to detect where an object is in each
frame. We know of only four datasets explicitly designed
for this purpose, all of which use bounding boxes as anno-
tations. The Princeton Tracking Benchmark [96] contains
100 videos of moving objects, such as dogs and toy cars.
The RGB-D people dataset [97, 70], the Kinect Tracking
Precision dataset [81] and the RGBD Pedestrian Dataset [ 7]
all track humans.

Other datasets contain labels appropriate for tracking:
two semantic scene datasets [1 12, 62] have static objects la-
beled through video as the camera moves, while the 6-DOF
object pose annotations in [45] could also be useful.

2.6. Activities and gestures

Given the original use case of the Kinect as a sensor de-
signed for human interaction, it is inevitable that much re-
search would focus on recognizing gestures and activities
from videos. See Table 5 for an overview of the large num-
ber of datasets in this area, and we refer the interested reader
to [117] for a more detailed survey of this field.

Actions being performed include sign language [59],
Italian hand gestures [26] and common daily actions such as
standing up, drinking and reading [ 100, 58, 82, , 65, 16].
Three datasets of humans falling over [60, 39, 38] reflect an
interest in use of RGBD sensors for monitoring vulnerable
humans in their daily lives. Others are more niche: 50 Sal-
ads [98] features over 4 hours of people preparing mixed
salads. Four datasets stand out for capturing humans with a
full MoCap setup [23, 34, 83, 51], while the Manipulation
Action Dataset [ 1] is unique in providing semantic segmen-
tation of objects as they are manipulated. By far the largest
gesture and action datasets are the Chal.earn gesture chal-
lenge [49] and NTU RGB+D [90], each with around 50,000
videos.

Many of these datasets suffer from being filmed in the
confines of an office or laboratory, with researchers per-
forming the actions. Filming real people at work and home
would help prevent dataset bias and provide a more believ-
able baseline for activity and gesture recognition.

Table 3. Datasets for object pose estimation

Device # objects #frames Notes Year
Cluttered scenes dataset [77] Minolta Vivid 910 5 48 Manual ground truth alignment ’06
LINEMOD RGBD dataset [45] Kinect v1 15 >18,000  Ground truth from calibration board 12
SHOT dataset [87] Kinect v1 6 16 - ’14
Rutgers APC RGB-D Dataset [85] Kinect v1 24 10,368 Semi-manual ground truth alignment 16




Table 4. Datasets for semantic reasoning and segmentation

Size Video? Realism® Labeling Year
RGB-D Semantic Segmentation 16 frames [ ]el@) Dense pixel labeling 11
Dataset [103]
L Bounding box labeling of objects from the ,
RGBD Scenes dataset [62] 8 scenes v 000 RGBD Objects dataset 11
Semantic segmentation of reconstructed ,
Cornell-RGBD-Dataset [57] 52 scenes v 000 point cloud into 17 classes 11
NYUv1 [92] 2283 frames b @00  Dense pixel labeling 11
Berkeley 3-D Object Dataset [52] 848 frames 000 Bounding box annotation 11
. . Per-pixel segmentation into objects; no se- ,
Object segmentation dataset [86] 111 frames 00O . 12
mantics
A 2240 frames total Polygon segmentation of objects arranged on ,
MPII Multi-Kinect dataset [101] from 4 Kinects ®00 kitchen worktop 12
Willow garage dataset [2] ~160 frames [ lofe) Dense pixel labeling 12
O!D_]CCt Disappearance for Object 1231 frames v P Grgund truth object segmentations of objects 12
Discovery [73] of interest
1449 frames from b Dense pixel labeling. A synthetic re-creation ,
NYUv2 [97] 464 scenes . b of the 3D scenes also exists [41] 12
RGBD Dataset for Category Modeling 900 frames 000 Whlch of 7 (':at.egones the dominant object in 13
[119] each image is in
SUN3D [117] 3 scenes v o000 Polygon labels. 8 scenes labeled, though full ‘13
dataset has more
RGBD Scenes dataset v2 [61] 14 scenes v [ ] l@] ltems from the RGBD ijects dataset la- 14
beled on reconstructed point cloud
SUN RGB-D [95] 10,335 frames® o0 3D f)bject bounding boxes, and polygons on ‘15
2D images
ViDRILO [77] 22454 frames v oo Semantlc 'ca'tegohry of frame, plus which ob- ‘15
from 5 scenes jects are visible in each frame
Toy dataset [50] 449 frames e 0 Per-pixel segmentation into objects; no se- ‘16

mantics

4 See Figure 3

b Extended version of dataset has video, but labels are only present in subset described here.

¢ Combines new Kinect v2 frames with new labels on existing datasets [

2.7. Faces

Early face datasets focused on the method of acquisition
(e.g. [118]) or tended to be quite small (e.g. [13]). The field
has now expanded to include datasets for identity recogni-
tion [25], pose regression [12, 28], and those where the ex-
pressions or emotions are to be inferred [27, 78]. We sum-
marize these in Table 6, and more details on some of these
datasets can be found in [3]. As front-facing depth cameras
become installed in laptops and tablets we expect this area
of research to continue to gain attention.

2.8. Recognition

Like datasets of actions, datasets designed for human
recognition (Table 7) typically film people performing ac-
tivities such as walking. However, the aim now is to rec-
ognize the identity, gender or other attributes about the sub-
jects, rather than the activity they are performing.

>
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3. Future areas for datasets

In Section 2 we reviewed the past and the present of
RGBD datasets. We now look to the future, and identify
underexplored ‘gaps in the market’.

3.1. Synthetic data

Aside from a few examples such as ICL-NUIM [44] and
SceneNet [43], synthetic data has received relatively lit-
tle attention for vision problems with depth cameras. Yet
such artificial data can offer many advantages. Ground truth
for tasks such as segmentation, reconstruction, tracking and
camera or object pose is perfect and available with no re-
quirement for expensive human labeling. Sequences can be
recaptured with carefully adjusted parameters, e.g. motion
blur and lighting changes, for algorithm introspection. It is
also possible to create scenarios difficult to capture in real
life, for example car crashes.



Table 5. Datasets representing activities and gestures

oL © s
“\Q O . 6@0 e\o
O C A S
39 x> Y ¢ Examples of actions Year
MSR Action3D [65] 10 20 567 v e.g. high arm wave, side kick, jogging 10
RGBD-HuDaAct [82] 30 12 1189 e.g. get up, enter room, stand up, mop the floor 11
SBU Kinect Interaction Dataset [116] 7 8 300 v Two people interacting e.g. approaching, departing 12
ACT42 [18] 24 14 6844 4 Kinects filming. Actions: e.g. collapse, reading 12
UTKinect-Action [111] 10 10 200 v e.g. walk, sit down, stand up, carry, clap hands 12
MSRDailyActivity3D [106] 10 16 320 v e.g. drink, eat, read book 12
G3D Gaming Action Dataset [11] 10 20 600 v Typical gaming actions 12
MSRC-12 Kinect gesture [33] 30 12 594 v Arm gestures 12
MSRGesture3D [59] 10 12 336 American Sign Language 12
ChaLearn Gesture Challenge [49] 20 850 50000 Many, e.g. diving signals and mudras 12
Senior Activity Recognition (RGBD- Older people performing activities e.g. sit down, eat, |
30 9 810 v 13

SAR) [114] walk, stand up
K3HI [48] 15 8 320 v Two humans interacting e.g. approaching, punching ’13
UPCYV action dataset [102] 20 10 400 v e.g. walk, wave, scratch head, phone, cross arms 13
DML-SmartAction [5] 16 12 932 Continuous recording. e.g. writing, sit down, walk, 13

clean table, stand up
Florence 3D actions dataset [89] 10 9 215 v e.g. wave, drinking, answer phone, clap, stand up 13
Cornell activty 60/120 [100, 58] 4 12/10  60/120 v e.g. brushing teeth, drinking, talking on couch 13
Sheffield KInect Gesture (SKIG) [69] 6 10 1080 Hand gestures e.g. circle, up-down, comehere 13
50 Salads [9%] 25 5 50 E;(illli}l):rson prepares two salads. Accelerometer on 13
Fer]keley Multimodal Human - Action 12 11 660 Vv e.g.jumping, bending, punching 13
Manipulation Action Dataset [1] 5 28 140 Mgnlpulatlon ac.tlons e.g. cu.ttmg, plus sequences of | 14

actions. Semantic segmentation of frames.
Composable activities dataset [66] 14 16 693 v e.g. throw, talk on phone, walk, wave, crouch, punch 14
TUM Morning Routine Dataset [53] 1 - b v Typical morning routine activities 14
ShakeFive [105] 37 2 100 v Hand shake or high-five between two individuals 14
Office activity dataset [108] >10 20 1180 e.g. mopping, sleeping, finding-objects, chatting 14
Human3.6M [51] 11 17 b v’V e.g. Discussion, smoking, taking photo 14
MSR 3D Online Action [115] 24 7 b e.g. drinking, eating, using laptop 14
I;IDorEhwistern—UCLA Multiview Action 10 10 b v Three Kinects filming. Actions: e.g. stand up, throw 14
G3Di Gaming Interaction Dataset [10] 12 17 - v Humans interacting with computer game 14
UR Fall Detection [60] 9 1 70 Humans falling over. Two Kinects. Accelerometer ‘14

from human
Montalbano Gesture [20] 27 20 13858 v Ttalian hand gestures 14
LaRED Hand Gesture Dataset [47] 10 27 810 Modified American Sign Language 14
LTTM MS Kinect and Leap Motion [71] 14 10 1400 American Slgp Language, recorded using Kinect and | 14

the Leap Motion
TJU dataset [67] 22 22 1936 v e.g. boxing, one hand wave, forward bend, sit down ’15

Continued overleaf |

4 v'=2D skeleton joint positions labeled on video frames; v'v'= 3D skeleton joint positions acquired from MoCap system
b These datasets feature continuous footage, so the discrete number of videos is less meaningful here.
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< Continued from previous page

M2] dataset [113] 22 22 1760 v Two people interacting, e.g. walk together ’15
Multi-view TIU [67] 20 2 7040 v Front and side view Kinects. Actions as TJU | 15
dataset
UTD Multimodal Human Action [16] 8 27 861 v Accelerometer data. Actions: e.g. wave, boxing 15
TST Fall Detection ver. 1/ver. 2 [39,38]  4/11 2 20/111 v Humans falling over ’15
TST TUG [22] 20 ? 60 v Timed Up and Go tests ’15
TST Intake Monitoring ver 1/ver 2 [37] 35 ? 35/60 Humans simulating eating 15
Life activities with occlusions [23] 1 - 12 v'v" No specific actions ’15
Background activity dataset [34] 50 4 5 vV Humans natually interacting in semi-natural en- 15
vironment
K3Da [64] 53 13 ? v To assess human health, e.g. leg jump, walking ’15
LTTM Creative Senz3D [76] 4 11 1320 Hand gestures e.g. ‘OK’ 15
Watch-n-Patch [110] 7 21 458 A sequence of actions e.g. making drink 15
NTU RGB+D [90] 40 60 56,000 v e.g. drinking, eating, sneezing, staggering, 16

punching, kicking

While sensor noise can be emulated [44, 40, 29, 75], it
can be very difficult for synthetic scenes to capture the true
properties of the real world. One option is to use existing 3D
assets. The synthetic Sintel dataset [14], for example, has
been used for RGB tasks such as optical flow. With depth
channels now available this may yet find a use in the RGBD
community. Another route is to use generative models of
scenes, following work on scene synthesis [32, 43].

3.2. Full voxel occupancy

Most existing semantic datasets view the world as a2.5D
image, where only surfaces directly viewed from one static
camera position are visible (Figure 4a). Even datasets with
videos (e.g. SUN3D [112]) tend to fail to capture the full
surface geometry of scenes (Figure 4b). Full surface geom-
etry is captured on an object level by [21] and on tabletop
scenes by [30] (Figure 4c), but capturing and reconstruct-

Table 6. Datasets of faces for pose and recognition

Subjects Sensor Description Labeling Year
Human Face [13] 1 Structured light 15 expressions performed by one R 07
scanner face
CASIA 3D Face Minolta Vivid 4624 images of various " ,
Database [19] 123 910 expressions, poses and lighting Expression performed 08
Bosphorus Database Inspeck Mega Faces performing expressions at . ,
[4] 105 Capturor II 3D different rotations Expression and pose 08
ETH Face Pose Range 20 Custom active Videos of face in various poses Nose position and coordinate 08
Image Data Set [12] stereo setup frame at the nose
N Custom active . . Perceived emotions. Audio s
B3D(AC)™2 [27] 14 stereo setup Recordings of humans speaking labeled with phonemes 10
Biwi Kinect Head 20 Kinect v People moving their heads in 3D position of the head and its 11
Pose Database [28] different directions rotation
VAP RGB-D Face 31 Kinect v1 1581 images of people doing Which person is in shot, and a ‘12
Database [46] mectv different poses in front a camera discretised gaze direction
3D Mask Attack . Some frames are of person with a F’erson y l,d gntlty, aqd if s
17 Kinect v1 spoofing’ is occurring. Eye 13
Dataset [25] face mask of someone else ..
positions
. . . Which of 20 expressions, plus 74
Face Warehouse [17] 150 Kinect v1 People performing expressions landmarks and meshes 14
Eurecom Kinect Face . Faces with different expressions, Expression type, and six facial ,
52 Kinect v1 . . L . 14
Dataset [78] occlusion and illumination landmark locations
VT-KFER [3] 32 Kinect v1 7 facial expressions labeled, in Percieved expression 15

scripted and unscripted scenarios




Table 7. Datasets for human recognition

Subjects  Description Labeling Year
RGB-D  Person  Re- 79 Humans walking, where subjects change 2D skeleton positions. Which hu- ‘12
identification [8] clothes between sessions man is in each video
IAS-Lab RGBD-ID 11 Humans walking, where subjects change 2D skeleton positions. Which hu- ‘14
Dataset [80] clothes (or room) between sessions man is in each video
BIWI RGBD-ID Dataset 50 Humans moving, where subjects change 2D skeleton positions. Which hu- 14
[80] clothes (or room) between sessions man is in each video
UPCV Gait dataset [55] 30 Efrf;s human walks down corridor multiple Identity and gender of each person ’15
Furthermore, we can imagine the benefits of an algo-
/-A (a) Early RGBD datasets focussed  rithm which could segment or semantically label a scene
: on single images of scenes, repre-

senting them in 212D.

Examples: [93, 52, 86]

(b) As reconstruction algorithms
improved, datasets have used
videos to capture more of the

scene. These still miss the backs of

many objects.

Example: [112]

(c) Few datasets capture the full vis-
ible surface geometry.

Examples: [21] captures objects,
and [30] captures tabletop scenes.

(d) No datasets, to our knowledge,
capture the full surface geometry
of scenes and provide semantic
labeling on the observed surface.

(e) Furthermore, our world extends
beyond the visible surface. Dense
volumetric labeling of scenes

would enable a deeper level of

understanding and interaction.

Figure 4. Datasets progress to include more 3D information.

ing a dataset of large, real-world scenes is left as an open
challenge.

Labeling the surfaces of such dense reconstructions (Fig-
ure 4d) would allow for semantic segmentation on a mesh
level. Many opportunities would be afforded by datasets
which provide labeled on this form of dense reconstruction
rather than on images or videos.

on a voxel level, following works such as [56]. To train and
validate such a system we would require a dataset contain-
ing semantic labeling of each voxel in a scene (Figure 4e).
The difficulty of applying such labeling by hand may make
synthetic data necessary for this problem.

3.3. Geometry of dynamic scenes

Aside from a single sequence from [6], we know of no
RGBD datasets captured from dynamic scenes with ground
truth dense geometry. One option is to use deformable
meshes provided for face datasets [36, ] or fabrics [35],
which can be synthetically re-rendered to give dense cor-
respondences between frames (e.g. Zollhoefer et al. [121]
re-render data from [104]). Datasets of humans with mo-
tion capture data (Section 2.6) also give a very sparse dense
geometry with correspondences.

The open challenge for the field of dense reconstruction
is to directly capture an RGBD dataset of deforming objects
with ground truth geometry and correspondences between
frames.

4. Conclusion

We have discovered a considerable quantity of RGBD
datasets available for researchers to use. While some over-
lap in their scope, overall the field is promisingly diverse
which suggests that depth information is useful in many dif-
ferent sectors.

Most datasets we reviewed have been captured as sin-
gle frames or videos from static cameras. We are now en-
tering an era where the collection and labeling of datasets
requires state-of-the-art computer vision research. For ex-
ample, capturing a dense dataset such as [21] would not
have been possible when the Kinect was first launched. As
reconstruction and labeling algorithms for RGBD data im-
prove, the community has a massive opportunity to create
and share new datasets of 3D reconstructions of static, and
ultimately dynamic scenes.
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