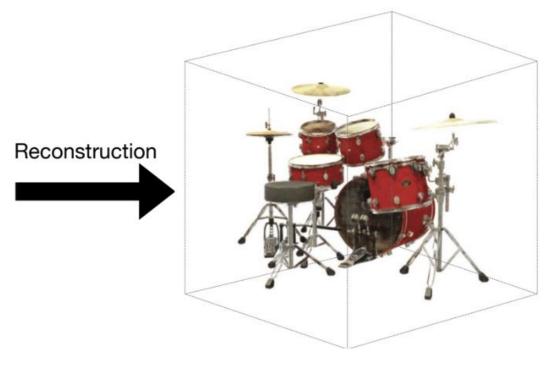
SPLATTER-360: GENERALIZABLE 360 GAUSSIAN SPLATTING FOR WIDE-BASELINE PANORAMIC IMAGES

DANIEL PERAZZO

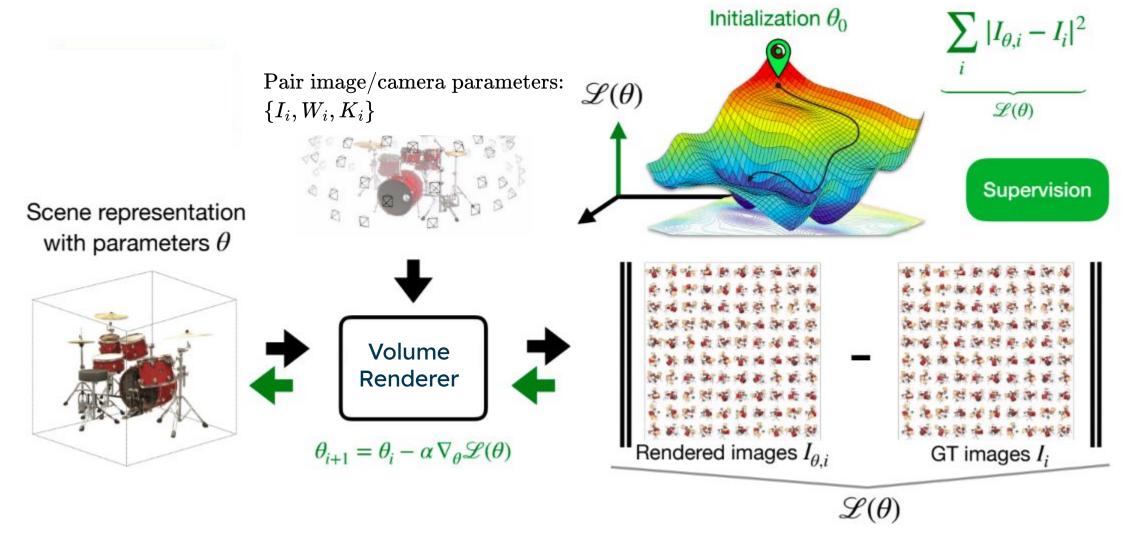


1. Introduction

1. Introduction

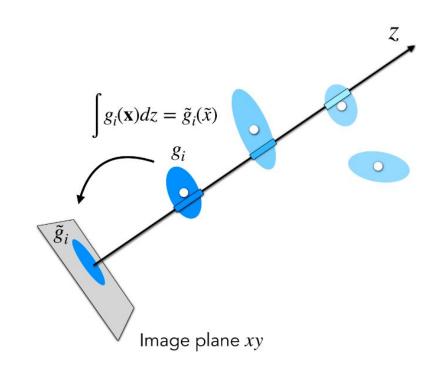
- 3D Reconstruction aims to retrieve a 3D object
 - Collection of Views (with camera parameters)
 - Obtain a representation of the 3D object

1. Introduction


- Revolutionized by 3D Gaussian Splatting
 - 3D Reconstruction technique
 - Represents the scene as 3D Gaussians
 - Fast and high-quality rendering

Kerbl, Bernhard, et al. "3D Gaussian Splatting for Real-Time Radiance Field Rendering." ACM Trans. Graph. 42.4 (2023): 139-1.

1. Introduction:: 3DGS


1. Introduction :: 3DGS Rendering

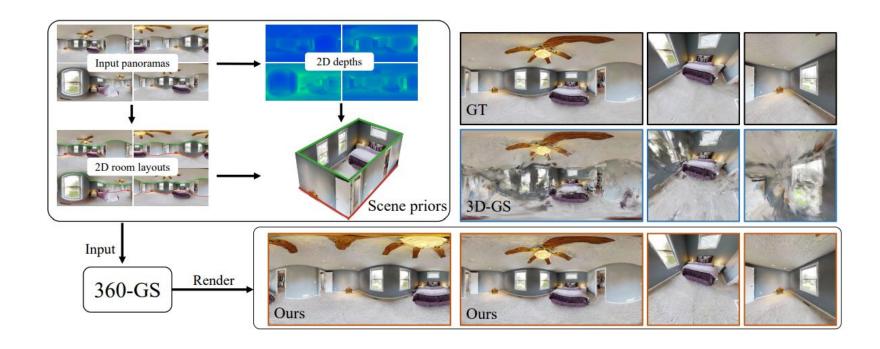
Assume you have the N Gaussians ordered in the ray And the Gaussians $g_i = (\Sigma_i, \mu_i, \sigma_i, c_i)$

Project the gaussians
$$ilde{g}_i = \left(ilde{\Sigma}_i, ilde{\mu}_i, ilde{\sigma}_i, c_i
ight)$$

$$I_f pprox \sum_i^N c_i ilde{\sigma_i} \exp{\left(-rac{1}{2}(p- ilde{\mu}_i)^T ilde{\Sigma}_i^{-1} \left(p- ilde{\mu}_i
ight)
ight)} T_i\left(p
ight)$$

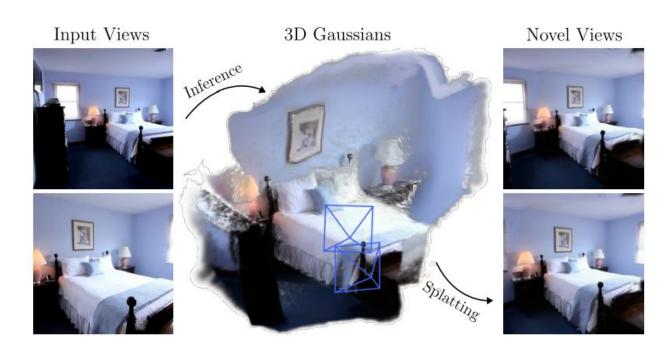
$$ext{Where } T_i\left(p
ight) = \prod_{i=0}^{i-1} (1 - ilde{\sigma_j} \exp\left(-rac{1}{2} (p - ilde{\mu}_j)^T ilde{\Sigma}_j^{-1} \left(p - ilde{\mu}_j
ight)
ight)$$

1. Introduction :: 360 Images


- Created for "common" images
 - Not for "wide-angle" images
 - o However, some techniques adapted to this setting

1. Introduction :: 360 Images

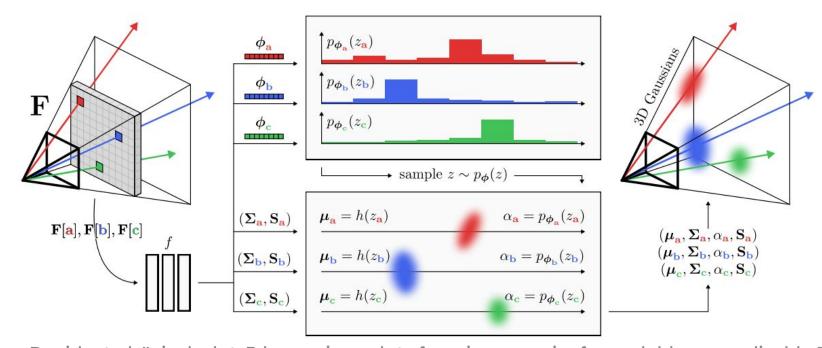
- Created for "common" images
 - Not for "wide-angle" images
 - However, some techniques adapted to this setting



Bai, Jiayang, et al. "360-gs: Layout-guided panoramic gaussian splatting for indoor roaming." 2025 International Conference on 3D Vision (3DV). IEEE, 2025.

1. Introduction :: FEED-FORWARD SPLATTING

- 3DGS needs to optimize
 - Not ideal and can be slow
 - Only works for many views (no sparse)
 - Use neural networks!

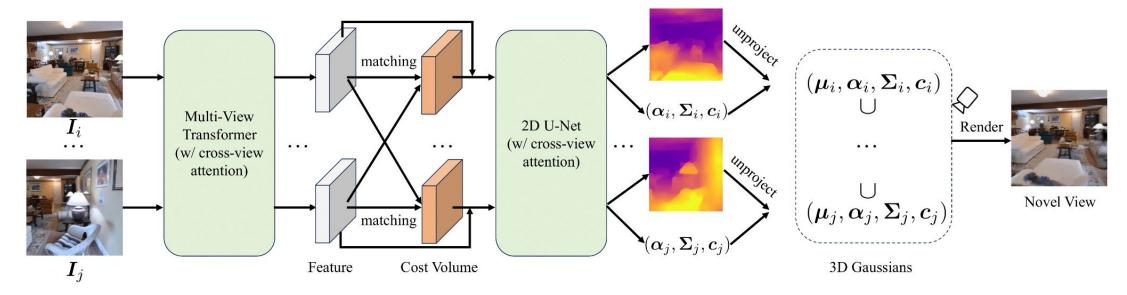


Charatan, David, et al. "pixelsplat: 3d gaussian splats from image pairs for scalable generalizable 3d reconstruction." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.

1MPA - 2025

1. Introduction :: Feed-forward Splatting

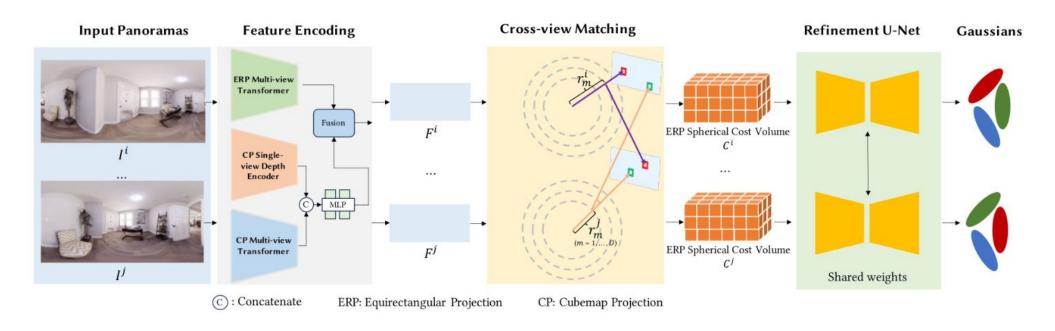
- 3DGS needs to optimize
 - Not ideal and can be slow
 - Only works for many views (no sparse)]
 - Use neural networks


Charatan, David, et al. "pixelsplat: 3d gaussian splats from image pairs for scalable generalizable 3d reconstruction." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.

1MPA - 2025

1. Introduction :: FEED-FORWARD SPLATTING

- 3DGS needs to optimize
 - Not ideal and can be slow
 - Only works for many views (no sparse)
 - Use neural networks

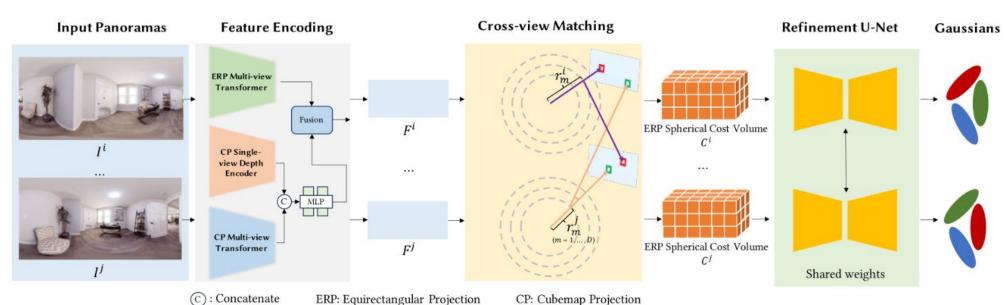

Chen, Yuedong, et al. "Mvsplat: Efficient 3d gaussian splatting from sparse multi-view images." European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2024.

IMPA - 2025

11

1. Introduction :: Splatter-360

- What if we mixed the problems?
 - Wide-angle
 - Feed-forward



Chen, Zheng, et al. "Splatter-360: Generalizable 360 Gaussian Splatting for Wide-baseline Panoramic Images." Proceedings of the Computer Vision and Pattern Recognition Conference. 2025.

1. Introduction: Splatter-360

- Objective
 - Perform feed-forward splatting with few-views
 - Equirectangular projection images
 - Present technique

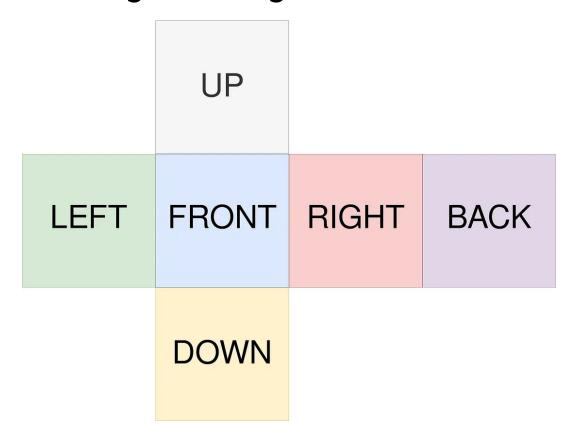
Images." Proceedings of the Computer Vision and Pattern Recognition Conference. 2025.

13

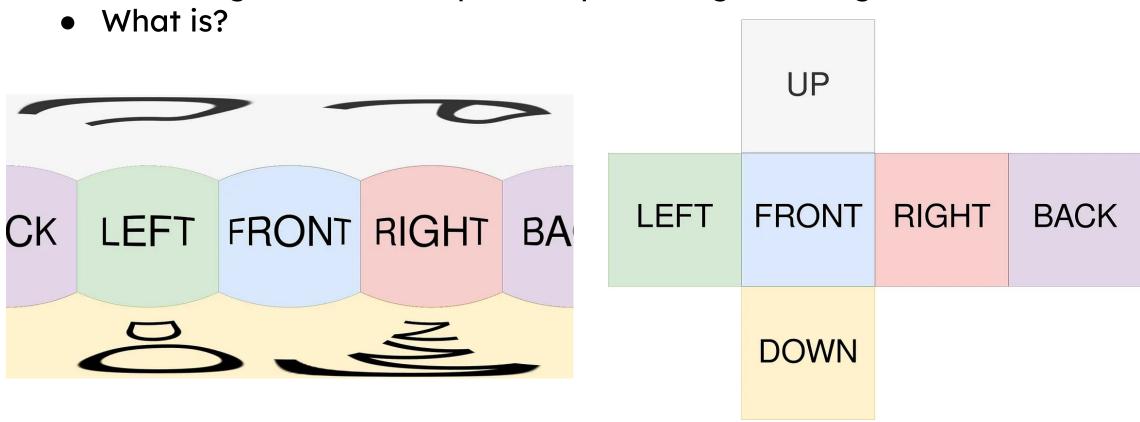
2. SPLATTER -360

- Uses different representations
 - Strength of cube-map and equirectangular images
- Depth module

- Uses different representations
 - Strength of cube-map and equirectangular images
- What is?



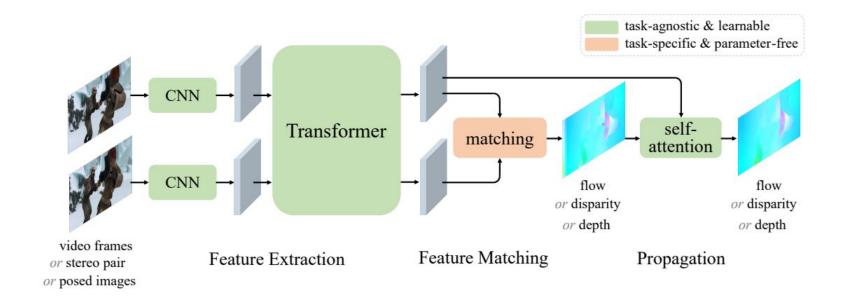
- Uses different representations
 - Strength of cube-map and equirectangular images


• What is?

- Uses different representations
 - Strength of cube-map and equirectangular images

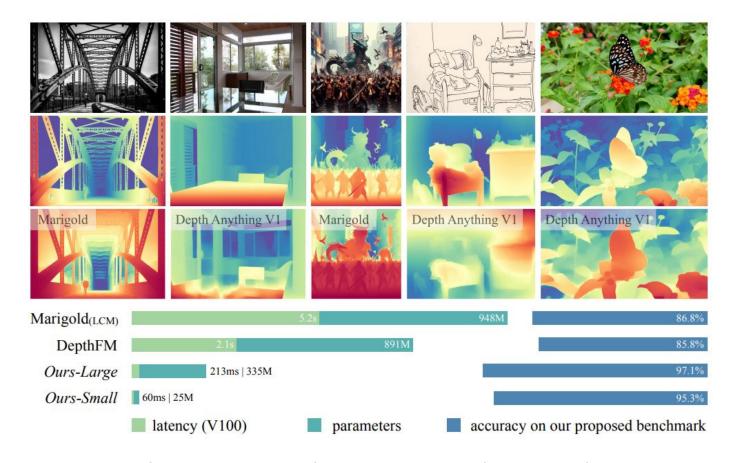
Uses different representations

Strength of cube-map and equirectangular images


• What is?

2. SPLATTER-360 :: INPUT

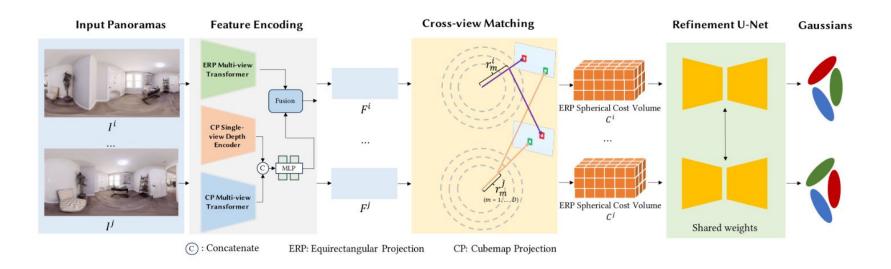
- Extract features F_ERP and F_CP
- Authors use Unimatch
 - Extract features from ERP and CP views



Chen, Zheng, et al. "Splatter-360: Generalizable 360 Gaussian Splatting for Wide-baseline Panoramic Images." Proceedings of the Computer Vision and Pattern Recognition Conference. 2025.

2. SPLATTER-360 :: DEPTH

For cube-map, extract depth features


Yang, Lihe, et al. "Depth anything v2." Advances in Neural Information Processing Systems 37 (2024): 21875-21911.

2. Splatter-360 :: Features

• Use these features to perform feature encoding

$$egin{aligned} oldsymbol{F}'_{C2E} &= \mathcal{F}_1([oldsymbol{F}^{mono}_{C2E}, oldsymbol{F}_{C2E}]) \ oldsymbol{F} &= \mathcal{F}_2(oldsymbol{F}'_{C2E}, oldsymbol{F}_{ERP}) \end{aligned}$$

2. Splatter-360 :: Cost Volume

- Construct cost volume
 - Depth map computation
 - Use cube-map
 - Can get behind the camera
 - Use Diff-pano approach

$$\begin{cases} \theta = (0.5 - \frac{u}{W}) \cdot 2\pi \\ \phi = (0.5 - \frac{v}{H}) \cdot \pi, \end{cases}$$

$$\begin{cases} x_{cam} = r \cos(\phi) \cdot \sin(\theta) \\ y_{cam} = r \sin(\phi) \\ z_{cam} = r \cos(\phi) \cdot \cos(\theta), \end{cases}$$

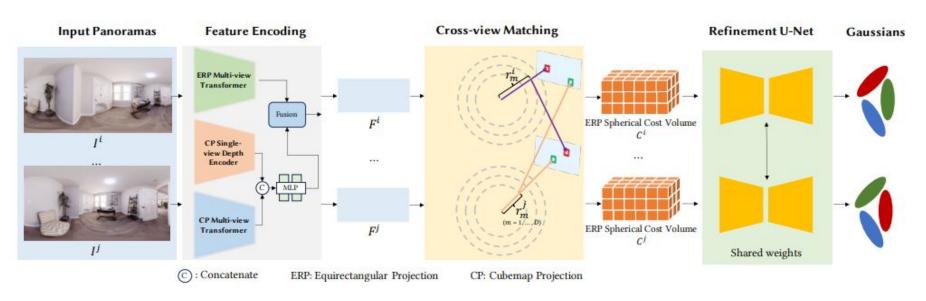
Ye, Weicai, et al. "Diffpano: Scalable and consistent text to panorama generation with spherical epipolar-aware diffusion." Advances in Neural Information Processing Systems 37 (2024): 1304-1332.

IMPA - 2025

2. Splatter-360 :: Cost Volume

- Construct the cost volume
 - You have source points (i) and target (j)
 - Use these to get the corresponding points in the camera
- Given a feature image F_i, compute distance with target F_(j->i)
 - Compute distance
 - Concatenate depths distance

$$p_{camera}^j = W^{i o j} p_{camera}^i$$


$$C_{r_m}^i = \frac{F^i \cdot F_{r_m}^{j \to i}}{\sqrt{C}} \in \mathbb{R}^{H \times W}, \quad m = 1, 2, \cdots, D,$$

$$oldsymbol{C}^i = [oldsymbol{C}_{r_1}^i, oldsymbol{C}_{r_2}^i, \cdots, oldsymbol{C}_{r_D}^i] \in \mathbb{R}^{H imes W imes D}$$

2. Splatter-360 :: Cost Volume

- Use U-Net to refine cost volume
 - MVSplat
 - Finally, use softmax to compute final depth
 - Compute per-depth gaussians
 - Train as usual

Chen, Yuedong, et al. "Mvsplat: Efficient 3d gaussian splatting from sparse multi-view images." European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2024.

25

- Used HM3D and Replica
- Compared with some techniques
 - PanoGRF
 - HiSplat
 - DepthSplat
 - MVSplat
- For various settings

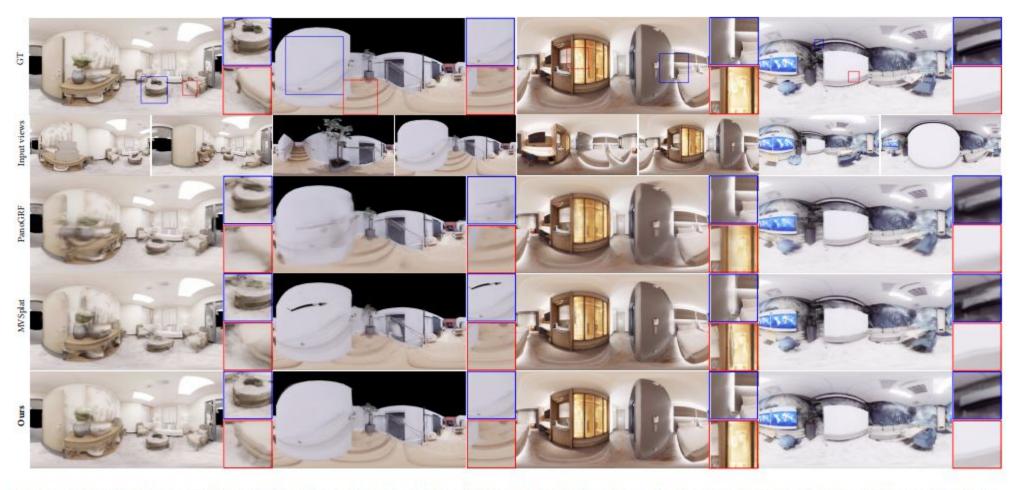


Figure 2. Qualitative comparison between our Splatter-360 and PanoGRF, MVSplat on the Replica dataset. Regions with notable differences are highlighted using red and blue rectangles. Please zoom in for a clearer view.

Figure 3. Qualitative comparison between our Splatter-360 and PanoGRF, MVSplat on the HM3D dataset. Regions with notable differences are highlighted using red and blue rectangles. Please zoom in for a clearer view.

•

Table 1. Quantitative comparison with baseline methods on the HM3D and Replica datasets. † indicates models that were trained by us on the panoramic dataset, whereas for all other methods, we used the pre-trained models provided by the original authors.

Method	HM3D [27]			Replica [32]		
	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓
HiSplat [35]	17.268	0.624	0.488	17.157	0.642	0.417
MVSplat [5]	17.574	0.636	0.441	18.005	0.631	0.512
DepthSplat [46]	20.224	0.695	0.383	19.369	0.732	0.334
PanoGRF [8]	25.631	0.813	0.268	27.920	0.892	0.171
MVSplat [†] [5]	27.179	0.851	0.176	28.399	0.908	0.115
Splatter-360 [†]	28.293	0.875	0.155	29.888	0.924	0.097

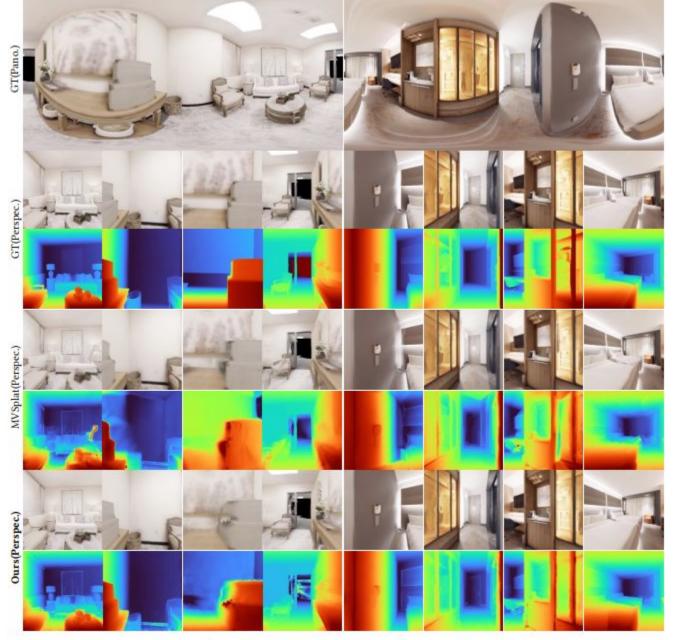


Figure 4. Novel view depth comparison between Splatter-360 and PanoGRF on the Replica dataset. "Pano." denotes panoramic view and "Perspec." denotes perspective view.

Table 2. Estimated depth comparison between MVSplat and Splatter-360 on the Replica and HM3D datasets.

Dataset	Metric	MVSplat	Splatter-360
Replica [32]	Abs Diff↓	0.132	0.102
	Abs Rel↓	0.088	0.063
	RMSE↓	0.247	0.197
	$\delta < 1.25 \uparrow$	89.913	94.572
HM3D [27]	Abs Diff↓	0.130	0.106
	Abs Rel↓	0.094	0.076
	RMSE↓	0.271	0.223
	$\delta < 1.25 \uparrow$	90.469	93.851

Table 3. Ablation studies were conducted on the HM3D and Replica datasets. For simplicity, we use the following abbreviations: 'SCV' for spherical cost volume and 'CVA' for cross-view attention.

Ablated module	Replica [32]			HM3D [27]		
	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓
× SCV	23.850	0.818	0.210	25.224	0.802	0.223
× CVA	28.217	0.905	0.124	26.918	0.851	0.182
× ERP	26.985	0.887	0.142	25.905	0.827	0.202
× CP	28.673	0.909	0.117	27.277	0.857	0.174
× Mono Feat.	28.654	0.911	0.116	27.380	0.858	0.173
Full	29.121	0.914	0.111	27.487	0.860	0.171

Table 4. Quantitative comparison with three context views between MVSplat and Splatter-360 on the Replica and HM3D datasets.

Dataset	Metric	MVSplat	Splatter-360	
	PSNR↑	29.121	29.109	
	SSIM [↑]	0.908	0.913	
	LPIPS↓	0.123	0.116	
Replica [32]	Abs Diff↓	0.125	0.103	
	Abs Rel↓	0.078	0.060	
	RMSE↓	0.233	0.193	
	$\delta < 1.25 \uparrow$	90.771	94.367	
HM3D [27]	PSNR↑	27.858	27.905	
	SSIM [↑]	0.861	0.868	
	LPIPS↓	0.174	0.168	
	Abs Diff↓	0.118	0.095	
	Abs Rel↓	0.083	0.067	
	RMSE↓	0.251	0.209	
	$\delta < 1.25 \uparrow$	91.684	94.545	

Table 5. Quantitative comparison under a narrow baseline between MVSplat and Splatter-360 on the Replica and HM3D datasets.

Dataset	Metric MVSpla		t Splatter-360	
	PSNR↑	32.521	33.282	
	SSIM [↑]	0.951	0.957	
	LPIPS↓	0.064	0.058	
Replica [32]	Abs Diff↓	0.109	0.090	
	Abs Rel↓	0.057	0.048	
	RMSE↓	0.214	0.171	
	$\delta < 1.25 \uparrow$	94.257	96.645	
HM3D [27]	PSNR↑	30.851	31.493	
	SSIM↑	0.915	0.925	
	LPIPS↓	0.109	0.101	
	Abs Diff↓	0.102	0.092	
	Abs Rel↓	0.060	0.058	
	RMSE↓	0.228	0.189	
	$\delta < 1.25 \uparrow$	94.802	96.031	

- Trained on a cluster of GPUs V100
 - Can't train
- Shared a model to test
 - o However, need to download 11 Gb Replica dataset

4. Conclusion

4. CONCLUSION

- Review:
 - Great idea and technique!
 - But paper could be more clearly written (loss function not specified)
 - PSNR difference is small
- But great work!!

SPLATTER-360: GENERALIZABLE 360 GAUSSIAN SPLATTING FOR WIDE-BASELINE PANORAMIC IMAGES

DANIEL PERAZZO

