360 Panoramas

Luiz Velho IMPA

Outlook

- Panoramic Surfaces / Parametrizations
- 360 Image Formats
- Omnidirectional Awareness

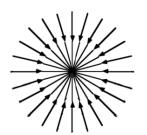
Panoramic Surfaces

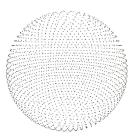
(AKA Plenoptic Surfaces)

Omnindirectional Image

The Set of All Rays incident at a point (x,y,z)

• Spherical Light Field = 360 degrees



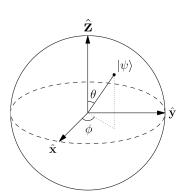


Canonical Representation

Spherical Representation

- Represent a point on the unit sphere with:
 - $\theta \in [0,2\pi)$: azimuth (longitude)
 - $\phi \in [0,\pi]$: **inclination** (colatitude, from north pole)

- $(x, y, z) = (\sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi)$

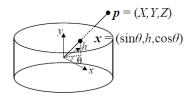


Panoramic Surfaces

Generalized Support for Visual Information

· Data Representation

- example: Cilindrical Panorama

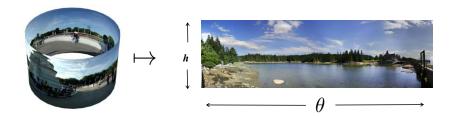


Parametrizations

Maps 2D Surface to Planar Domain

• Coordinate Systems

- example: Cilindrical Mapping



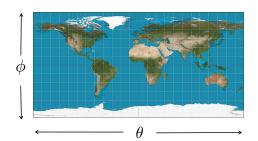
360 Image Formats

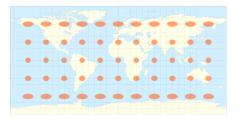
360° Image Formats

- · Parametrizations of the Sphere
 - Lat-Long
 - Cube Map
 - Mirror Ball
 - Azimuthal
 - Stereographic

Equirectangular

• Latitude-Longitude Mapping (e.g., Flickr)





natural coordinate system

distortion toward poles

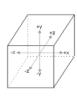
Most Convenient Format

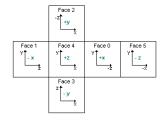
Equirectangular Projection (Latitude-Longitude)

- Parametrization
 - $(\theta, \phi) \in [0, 2\pi] \times [0, \pi]$
- Pros:
 - Common in 360° photography / video
 - Simple mapping to/from sphere
- Cons:
 - Large distortion near poles (especially vertical stretching)

Cube Mapping

• 6 Perspective Projections





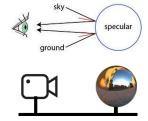
suitable for CG rendering

Cube Map Projection

- Sphere is projected onto the six faces of a cube
 - mapped from a corresponding direction: ±X, ±Y, ±Z.
- Pros:
 - Lower distortion compared to equirectangular
 - Efficient GPU rendering and sampling
- Cons:
 - Requires special handling for edges/corners
 - Discontinuous across face boundaries

Mirrored Ball

· Reflection Mapping



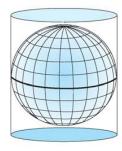
HDR Light Maps

Projection of Mirror Sphere

- Parametrization (orthographic projection of reflective sphere onto a plane)
 - For each pixel (x, y) inside the unit disk, the viewing direction is obtained from reflection on a virtual mirror ball
- Pros:
 - Matches certain real-world acquisition methods (e.g., mirrored spheres)
 - Direct relation to environment lighting
- Cons
 - Severe compression near center
 - Unused image corners (outside the circle)

Azimuthal Projection

· Hemispherical Mapping



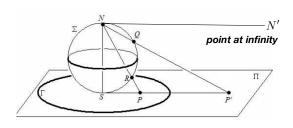
Dome Master standard - Used in fulldome theaters and planetariums

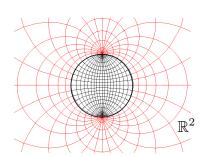
Dome Master / Fisheye Projection

- Parametrization
 - (r, θ) , $r = f(\phi)$
 - Dome Master format : $r = R \cdot \phi$
- Pros:
 - Natural for hemispherical displays
 - High angular accuracy in center
- Cons:
 - Non-uniform resolution
 - Needs remapping for VR/video

Stereographic

• Conformal Mapping (preserves angles)





infinite plane

Stereographic Projection

- Parametrization
 - Projects points from the sphere onto a plane from a fixed point (i.e., N / S pole)

$$(x, y) = \frac{(X, Y)}{1 + Z}, \qquad (X, Y, Z) \in \mathbb{S}^2$$

- Pros:
 - Conformal (angle-preserving)
 - Useful in visualization and computations
- · Cons:
 - Not area-preserving
 - Can't capture the full sphere in a bounded region

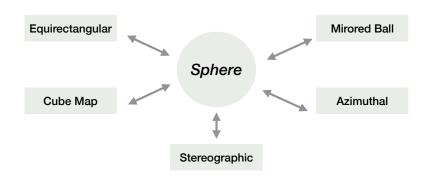
Summary Table

Format	Domain Shape	Sphere Coverage	Key Feature	Common Uses
Equirectangular	Rectangle	Full sphere	Simple mapping, heavy pole distortion	360° video, web rendering
Cube Map	6 square faces	Full sphere	Low distortion, face seams	Real-time rendering, environment map
Mirrored Ball	Circle in square	Hemisphere	Matches reflective sphere optics	Image-based lighting (IBL)
Dome Master (Azimuthal)	Circle	Hemisphere (often 180°)	Radial fisheye layout	Fulldome, planetarium, VR domes
Stereographic	Disk (unbounded)	Hemisphere	Angle-preserving projection	Mathematical visualization, conformal

Format Conversion

Basic Scheme

- Conversion formulas:
 - Between unit vector $(x,y,z) \in \mathbb{S}^2$ and corresponding image coordinates (u,v)
 - Assume the input vector is already normalized : $x^2 + y^2 + z^2 = 1$



Equirectangular Conversion

Direct Mapping

$$u = \frac{\arctan 2(y,x)}{2\pi} \cdot W \bmod W$$

$$v = \frac{\arccos(z)}{\pi} \cdot H$$

· Inverse Mapping

Given pixel coordinates $(u,v) \in [0,W) \times [0,H)$:

$$\theta = 2\pi \cdot \frac{u}{W}, \quad \phi = \pi \cdot \frac{v}{H}$$

$$x = \sin \phi \cdot \cos \theta$$
, $y = \sin \phi \cdot \sin \theta$, $z = \cos \phi$

Cube Map Conversion

Direct Mapping

- Determine major axis: $\mathbf{major} = \arg \max(|x|, |y|, |z|)$
- Project onto the corresponding face and compute $(s,t) \in [-1,1]$ based on direction:

$$\begin{array}{c|cccc} + \mathbf{X} & \mathbf{x} = \max(-z, x) \\ - \mathbf{X} & \mathbf{x} = -\max(z, x) \\ + \mathbf{Y} & \mathbf{y} = \max(x, y) \\ - \mathbf{Y} & \mathbf{y} = -\max(x, y) \\ + \mathbf{Z} & \mathbf{z} = \max(x, z) \\ - \mathbf{Z} & \mathbf{z} = -\max(-x, z) \end{array}$$

• Map. (s, t) to image pixels within the face

Inverse Mapping

- Given:
 - face index $F \in \{\pm X, \pm Y, \pm Z\}$, and
 - pixel coordinates in normalized face space $(s, t) \in [-1, 1]^2$
- Define the direction vector (x, y, z) per face F:

$$\begin{array}{c|cccc} +X & (1,\ -t,\ -s) \\ -X & (-1,\ -t,\ s) \\ +Y & (s,\ 1,\ t) \\ -Y & (s,\ -1,\ -t) \\ +Z & (s,\ -t,\ 1) \\ -Z & (-s,\ -t,\ -1) \end{array}$$

Normalize:

$$(x, y, z) \leftarrow \frac{(x, y, z)}{\sqrt{x^2 + y^2 + z^2}}$$

Mirrored Ball Conversion (approx.)

· Direct Mapping

$$\theta = \arctan 2(y, x)$$

$$\phi = \arccos(z)$$

$$r = R \cdot \left(1 - \frac{\phi}{\pi}\right)$$

$$x' = r\cos\theta, \quad y' = r\sin\theta$$

• Inverse Mapping

Given planar image coordinates (x', y') inside a circle of radius R:

$$r = \sqrt{x'^2 + y'^2}, \quad \theta = \arctan 2(y', x')$$

$$\phi = \pi \cdot \left(1 - \frac{r}{R}\right)$$

$$x = \sin \phi \cdot \cos \theta$$
, $y = \sin \phi \cdot \sin \theta$, $z = \cos \phi$

Azimuthal Conversion

Direct Mapping

Only valid for upper hemisphere $z \ge 0$

$$\theta = \arctan 2(y, x)$$

$$\phi = \arccos(z)$$

$$r = R \cdot \frac{\phi}{\pi/2} = \frac{2R\phi}{\pi}$$

$$x' = r\cos\theta, \quad y' = r\sin\theta$$

Inverse Mapping

Given $(x', y') \in \mathbb{R}^2$ in circular image of radius R:

$$r = \sqrt{x'^2 + y'^2}, \quad \theta = \arctan 2(y', x')$$

$$\phi = \frac{\pi}{2} \cdot \frac{r}{R}$$

$$x = \sin \phi \cdot \cos \theta$$
, $y = \sin \phi \cdot \sin \theta$, $z = \cos \phi$

Note: Valid for $r \leq R \rightarrow$ upper hemisphere only

Stereographic Conversion

Direct Mapping

$$x' = \frac{x}{1+z}, \quad y' = \frac{y}{1+z}$$

(valid for $z \neq -1$, i.e., north hemisphere)

• Inverse Mapping

Given planar coordinates $(x', y') \in \mathbb{R}^2$:

$$r^2 = x'^2 + y'^2$$

$$x = \frac{2x'}{1+r^2}, \quad y = \frac{2y'}{1+r^2}, \quad z = \frac{r^2-1}{1+r^2}$$

OBS: Conversion to Complex Plane

The Complex Plane

Riemann Sphere / Complex Plane Conversion

The stereographic projection maps points on the unit sphere $\mathbb{S}^2 \subset \mathbb{R}^3$ to the extended complex plane $\widehat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$.

Stereographic Projection Formulas

• From Sphere to Complex Plane:

$$z_{\mathbb{C}} = \frac{x + iy}{1 - z}$$
 for $z \neq 1$

• From Complex Plane to Sphere:

Let $z_{\mathbb{C}} = u + iv$, with $r^2 = |z_{\mathbb{C}}|^2 = u^2 + v^2$, then:

$$x = \frac{2u}{1+r^2}, \quad y = \frac{2v}{1+r^2}, \quad z = \frac{r^2-1}{1+r^2}$$

• Point at Infinity:

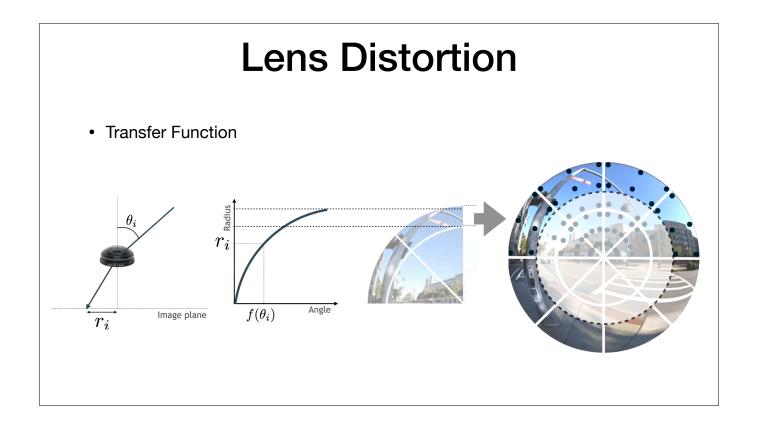
$$z_{\mathbb{C}} = \infty \quad \leftrightarrow \quad (x, y, z) = (0, 0, 1)$$

Summary Table

Conversion	Formula		
Sphere \rightarrow Complex Plane	$z_{\mathbb{C}}=rac{x+iy}{1-z}$		
	$x = rac{2\operatorname{Re}(z_{\mathbb{C}})}{1+ z_{\mathbb{C}} ^2}y = rac{2\operatorname{Im}(z_{\mathbb{C}})}{1+ z_{\mathbb{C}} ^2}z = rac{ z_{\mathbb{C}} ^2-1}{1+ z_{\mathbb{C}} ^2}$		
$z_{\mathbb{C}}=\infty$	(x, y, z) = (0, 0, 1)		

Stereographic projection between the Riemann Sphere and the extended complex plane.

Omnidirectional Awareness

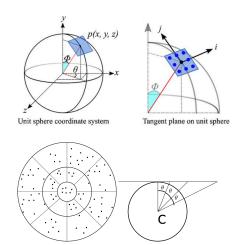


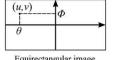
Parametrization Distortion

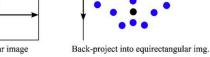
• Equirectangular Projection

Adaptive Sampling

• Non-Uniform Sampling





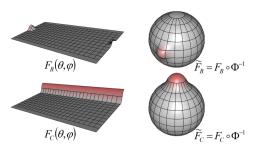


Awareness

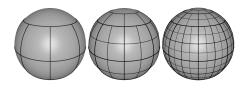
- Metric Aware
- Sampling Aware
- Computation Aware
- Content Aware
- View Aware

Metric Aware

· Basis Functions



Multiresolution



Sampling Aware

• Regular Sampling

Adapted Sampling

Computation Aware

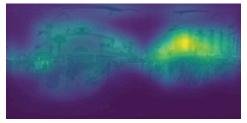
• Convolution Operator

Conventional CNN

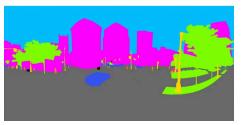
Deformable CNN

Content Aware

Saliency



• Segmentation



View Aware

Gaze Direction

