Omnidirectional Cameras

Luiz Velho IMPA

Outlook

- Practice
 - Wide-Angle Image Capture
 - 360 Cameras Rigs
- Theory
 - Geometry of Omnidirectional Cameras
 - Camera Models

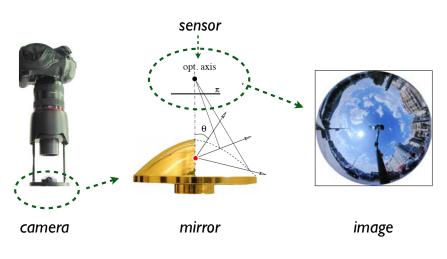
Practice Wide-Angle Image Capture

Wide-Angle Image Capture

- Omnidirectional Cameras
 - Catadioptric
 - Dioptric

Catadioptric Cameras

• Mirror-Based (parabolic or hyperbolic)



Dioptric Cameras • Fish Eye Lenses optical axis optical axis lens camera image

Omnidirectional Rigs

Multi-Camera Systems

• Point Grey's Ladybug (6 Perspective Cameras)

360 Camera Rigs

360° Cameras

- Research Prototypes
- Professional Cameras

Research Prototypes

• Google Jump

2015

• Facebook Surround

2016

3D Stereo Cameras

(3D Light Field)

Professional Cameras

• Insta 360 Pro 2 2018

3D Stereo
(3D Light Field)

• Lytro Imerge (2017 - 2018)

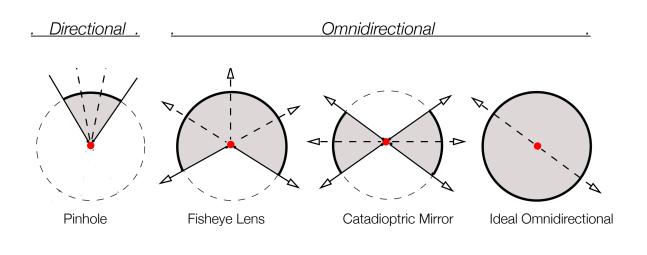
Light Field
(4D Light Field)

Theory

Geometry of Omnidirectional Cameras

Based on Micusik, 2004

Camera Types



· Field of View

Image Formation

Key Assumptions

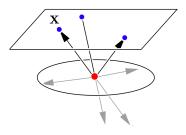
- Lenses & Mirrors:
 - Symmetric wrt. Optical Axis

- Sensor Plane:
 - Perpendicular to Axis of Symmetry

Central Camera Models

• $P \in \mathbb{R}^{3\times 4}$ (projection matrix), $X \in \mathbb{R}^4 \setminus \{0\}$ (scene point)

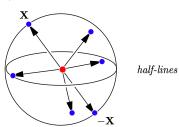
Perspective Model



 $\exists \alpha \neq 0 : \alpha \mathbf{x} = P \mathbf{X},$

 $\mathbf{x} \in \mathbb{R}^3 \setminus \{0\} \text{ image } \underline{\text{point}}.$

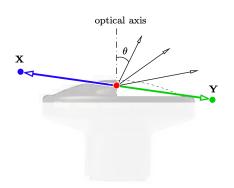
Spherical Model

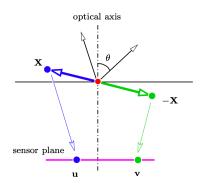


 $\exists \alpha > 0 : \ \alpha \mathbf{q} = \mathbf{P} \mathbf{X},$

 $\mathbf{q} \in \mathbb{R}^3 \setminus \{0\}$ 3D <u>vector</u>

Omnidirectional Projection

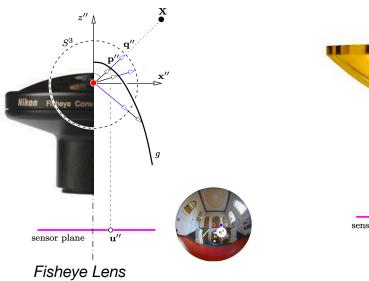


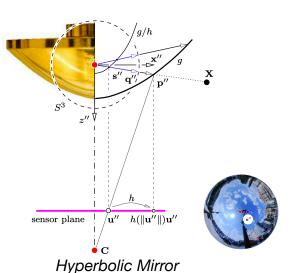


• Omnidirectional projection of two scene points X and Y=-X lying on opposite half-lines (map as two different image points **u** and **v** to a sensor plane)

Mapping to Sensor

• Projection of scene point X into a sensor plane point u"





Projection Model

• The projection of scene point X on the unit sphere around projection center C

$$X \mapsto \mathbf{q}'' \in S^3 = \{\mathbf{x} \in \mathbb{R}^{\bar{3}} : ||\mathbf{x}|| = 1\}.$$

• There is a <u>vector</u> $\mathbf{p}'' = (\mathbf{x}'', z'')^T$ with same direction as \mathbf{q}'' , which maps to sensor plane \mathbf{u}'' , s.t. \mathbf{u}'' is collinear with \mathbf{x}'' , i.e.

is collinear with
$$\mathbf{x}''$$
, i.e.
$$\mathbf{p}'' = \begin{pmatrix} h(\|\mathbf{u}''\|, \mathbf{a}'') \mathbf{u}'' \\ g(\|\mathbf{u}''\|, \mathbf{a}'') \end{pmatrix}, \qquad \text{axial term} \qquad \mathbf{q}'' \qquad \mathbf{p}'' \qquad \mathbf{q}'' \qquad \mathbf{p}'' \qquad \mathbf{q}'' \qquad \mathbf{q}$$

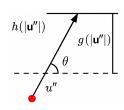
where g, h are functions $\mathbb{R} \times \mathbb{R}^N \to \mathbb{R}$, which depend on the radius $\|\mathbf{u}''\|$ of the sensor

Projection Functions

Rotationally Symmetric

$$g,h(\|\mathbf{u}''\|) = g,h(\|\mathbf{R}\,\mathbf{u}''\|)$$
 $\mathbf{R} \in \mathbb{R}^{2 imes 2}$, around the center of symmetry

- Depend on Camera Type
 - Lens Projection (Equisolid, Equiangular, Etc.)
 - Mirror Type (Parabolic, Hyperbolic, Elliptical)
- Function g
 - Physical Meaning (shape of mirror)
- Function h
 - Camera Projection (i.e., Orthographic h = 1)



General Projection

perspective projection:
$$\begin{pmatrix} 1 \mathbf{u}'' \\ 1 \end{pmatrix}$$
 omnidirectional projection:
$$\begin{pmatrix} h(\|\mathbf{u}''\|) \mathbf{u}'' \\ g(\|\mathbf{u}''\|) \end{pmatrix}$$

· Unified Model

 Projection onto the unit sphere followed by a projection the sphere to a plane with a projection center on the perpendicular to the plane.

$$h(\|\mathbf{u}''\|) = \frac{l(l+m) + \sqrt{\|\mathbf{u}''\|^2(1-l^2) + (l+m)^2}}{\|\mathbf{u}''\|^2 + (l+m)^2},$$

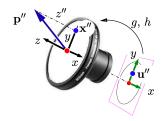
$$g(\|\mathbf{u}''\|) = \frac{l\|\mathbf{u}''\|^2 + (l+m)\sqrt{\|\mathbf{u}''\|^2(1-l^2) + (l+m)^2}}{\|\mathbf{u}''\|^2 + (l+m)^2},$$

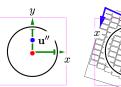
where constants l, m, depending on the type of projection,

Digitization Process

• 3 Steps:

- i) a central projection of the scene point ${\bf X}$ to the vector ${\bf p''},$
- ii) a non-perspective optics or mirror reflection, described by the functions g and h, mapping \mathbf{p}'' to \mathbf{u}'' , and
- iii) a digitization process transforming the sensor plane point \mathbf{u}'' to the digital image point \mathbf{u}' .





$$\mathbf{u}'' = \mathbf{A}'\mathbf{u}' + \mathbf{t}'$$

Complete Image Formation

Projection of a scene point X into the digital image point u'

$$\frac{1}{\alpha''}\operatorname{P}''\operatorname{\mathbf{X}} = \operatorname{\mathbf{p}}'' = \left(\frac{\operatorname{\mathbf{x}}''}{z''}\right) = \left(\frac{h(\|\operatorname{\mathbf{u}}''\|)\operatorname{\mathbf{u}}''}{g(\|\operatorname{\mathbf{u}}''\|)}\right) = \left(\frac{h(\|\operatorname{\mathbf{A}}'\operatorname{\mathbf{u}}' + \operatorname{\mathbf{t}}'\|)(\operatorname{\mathbf{A}}'\operatorname{\mathbf{u}}' + \operatorname{\mathbf{t}}')}{g(\|\operatorname{\mathbf{A}}'\operatorname{\mathbf{u}}' + \operatorname{\mathbf{t}}'\|)}\right),$$

so that the projection equation for omnidirectional cameras is

$$\exists\,\alpha''>0\colon\quad\alpha''\,\left(\begin{array}{cc}h(\|\mathbf{A}'\mathbf{u}'+\mathbf{t}'\|)(\mathbf{A}'\mathbf{u}'+\mathbf{t}')\\g(\|\mathbf{A}'\mathbf{u}'+\mathbf{t}'\|)\end{array}\right)=\mathbf{P}''\,\mathbf{X}\,,$$

where $P'' \in \mathbb{R}^{3\times 4}$ is a projection matrix, $A' \in \mathbb{R}^{2\times 2}$, rank(A') = 2, and $\mathbf{t}' \in \mathbb{R}^2$ represent an affine transformation in the sensor plane and $\mathbf{u}' \in \mathbb{R}^2$ is a point in the digital image.

Camera Models

Camera Models

• Narrow (< 180 degrees FOV - normal cameras)

Take in points that are in pixels (*normalized image coordinates*). Normalized image coordinates represent a 3D pointing vector within the FOV.

• Wide (no limit on FOV - fisheye or mirror)

Wide camera models use *spherical coordinates* instead since they do not make the assumption that visible points always appear in front of the camera.

Models

- Pinhole
- Brown
- Universal Omni
- Kannala-Brandt

Pinhole Model

- · Basic camera model
 - Does not model lens distortion.

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} f_x & skew & cx \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_n \\ y_n \\ 1 \end{bmatrix}$$

where the 3x3 is the intrinsic camera matrix and is also known as K.

Brown Model

- Models lens distortion radial and tangential ("decentering") distortion.
 - It is appropriate for most lenses with a FOV less than 180 degrees.

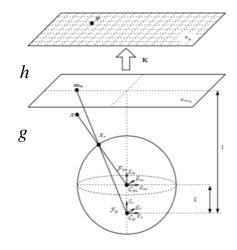
$$egin{bmatrix} x \ y \ 1 \end{bmatrix} \sim K egin{bmatrix} x_d \ y_d \ 1 \end{bmatrix} \ egin{bmatrix} x_d \ y_d \end{bmatrix} = \sum_{i=0}^{i < rad} a_i r^{2i} egin{bmatrix} x_n \ y_n \end{bmatrix} + egin{bmatrix} 2t_1 x_n y_n + t_2 (r^2 + 2x_n^2) \ t_1 (r^2 + 2y_n^2) + 2t_2 x_n y_n \end{bmatrix}$$

$$r=\sqrt{x_n^2+y_n^2}$$
 radial distortion coefficient (t_1,t_2) tangential coefficients.

Universal Omni Model

- Adds a Mirror Offset to the Brown camera model
 - parabola, hyperbola, ellipse, and plane mirror
- Only Difference from the Brown model:
 - how it converts spherical into image coordinates:

$$\left[egin{array}{c} x_n \ y_n \end{array}
ight] = \left[egin{array}{c} x_s/(z_s+\epsilon) \ y_s/(z_s+\epsilon) \end{array}
ight]$$



· After this step it has identical equations to Brown

Kannala-Brandt Model

• Wide camera model that supports perspective, stereographic, equidistance, equisolid angle, and orthogonal projection models.

Radially Symmetric Model:

$$r(\theta) = k_1\theta + k_2\theta^3 + k_3\theta^5 + \cdots$$

$$\left[egin{array}{c} x_n \ y_n \end{array}
ight] = r(heta) \left[egin{array}{c} \cos\phi \ \sin\phi \end{array}
ight]$$

Radial Distortion Model:

$$\Delta_r(heta,\phi) = (l_1\phi + l_2\phi^3 + l_3\phi^5)(i_1\cos\phi + i_2\sin\phi + i_3\cos2\phi + i_4\sin2\phi)$$

Tangential Distortion Model:

$$\Delta_t(heta,\phi) = (m_1\phi + m_2\phi^3 + m_3\phi^5)(j_1\cos\phi + j_2\sin\phi + j_3\cos2\phi + j_4\sin2\phi)$$

Full Camera Model:

$$x_d = r(\theta)u_r(\phi) + \Delta_r(\theta,\phi)u_r(\phi) + \Delta_t(\theta,\phi)u_\phi(\phi)$$

where x_d are the distorted normalized image coordinates, $u_r(\phi)$ is a unit vector in radial direction, and $u_{\phi}(\phi)$ is a unit vector in tangential direction.

