Volume Differentiable Rendering & NeRFs

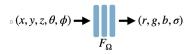
Based on slides from [Gkioulekas, 2025], [Takikawa et al, 2023] and [Tulsiani, 2024]

Recap - Volume Rendering Pipeline

• Differentiable Volumetric Rendering Function



Neural Volumetric 3D Scene Model



• Reconstruction via Analysis-bySynthesis

Outline

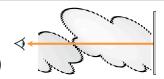
- Radiative Transfer Equation
- Volume Rendering Equation
- Differentiable Rendering
- 3D Scene Models
- NeRFs

Radiative Transfer Equation

Slides from [Gkioulekas, 2025]

Participating Media

Typically, we do not model particles of a medium explicitly (wouldn't fit in memory, completely impractical to ray trace)

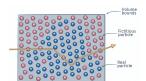


The properties are described statistically using various coefficients and densities

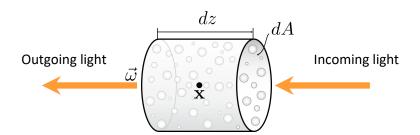
- Conceptually similar idea as microfacet models

Heterogeneous (spatially varying coefficients):

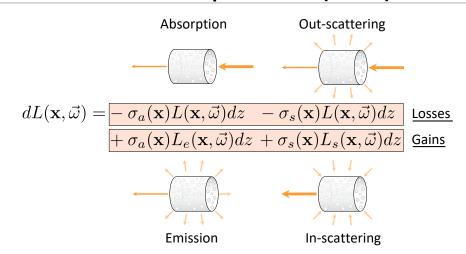
- Procedurally, e.g., using a noise function
- Simulation + volume discretization, e.g., a voxel grid



Differential Beam Segment

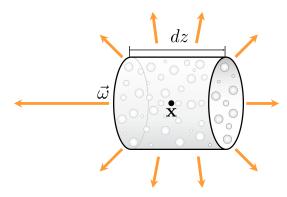


Radiative Transfer Equation (RTE)



(Gkioulekas)

Emission



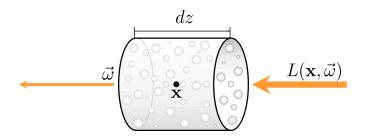
 $dL(\mathbf{x}, \vec{\omega}) = \sigma_a(\mathbf{x}) L_e(\mathbf{x}, \vec{\omega}) dz$

*Sometimes modeled without the absorption coefficient just by specifying a "source" term $\sigma_a(\mathbf{x})$: absorption coefficient m

 $L_e(\mathbf{x}, \vec{\omega})$: emitted radiance

 $[m^{-1}]$

Absorption

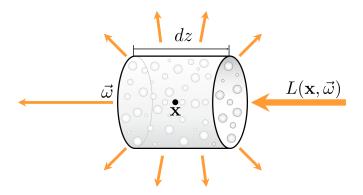


$$dL(\mathbf{x}, \vec{\omega}) = -\sigma_a(\mathbf{x})L(\mathbf{x}, \vec{\omega})dz$$

$$\sigma_a(\mathbf{x}) : \text{absorption coefficient} \qquad [m^{-1}]$$

(Gkioulekas)

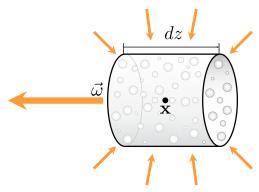
Out-scattering



$$dL(\mathbf{x}, \vec{\omega}) = -\sigma_s(\mathbf{x})L(\mathbf{x}, \vec{\omega})dz$$

$$\sigma_s(\mathbf{x}) : \text{scattering coefficient} \qquad [m^{-1}]$$

In-scattering



$$dL(\mathbf{x}, \vec{\omega}) = \sigma_s(\mathbf{x}) L_s(\mathbf{x}, \vec{\omega}) dz$$

 $\sigma_s(\mathbf{x})$: scattering coefficient $[m^{-1}]$

 $L_s(\mathbf{x}, \vec{\omega})$: in-scattered radiance

(Gkioulekas)

Complexity Progression - Scattering

homogeneous vs. heterogeneous

- none
- fake ambient
- single
- multiple

Volume Rendering Equation

Slides from [Gkioulekas, 2025]

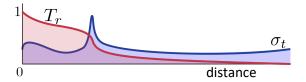
Transmittance

Homogeneous volume:

$$T_r(\mathbf{x}, \mathbf{y}) = e^{-\frac{\mathbf{\sigma_t} \|\mathbf{x} - \mathbf{y}\|}{2}}$$

Heterogeneous volume (spatially varying σ_t):

$$T_r(\mathbf{x}, \mathbf{y}) = e^{-\frac{\int_0^{\|\mathbf{x} - \mathbf{y}\|} \sigma_t(t) dt}{\text{Optical thickness}}}$$



Volume Rendering Equation

$$L(\mathbf{x}, \vec{\omega}) = T_r(\mathbf{x}, \mathbf{x}_z) L(\mathbf{x}_z, \vec{\omega})$$

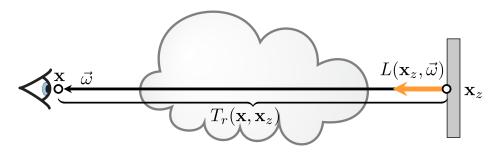
$$+ \int_0^z T_r(\mathbf{x}, \mathbf{x}_t) \sigma_a(\mathbf{x}_t) L_e(\mathbf{x}_t, \vec{\omega}) dt$$

$$+ \int_0^z T_r(\mathbf{x}, \mathbf{x}_t) \sigma_s(\mathbf{x}_t) \int_{S^2} f_p(\mathbf{x}_t, \vec{\omega}, \vec{\omega}) L_i(\mathbf{x}_t, \vec{\omega}') d\vec{\omega}' dt$$

(Gkioulekas)

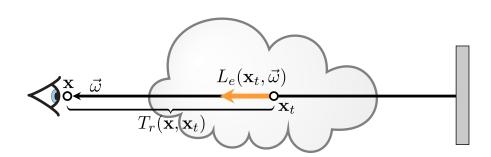
Volume Rendering Equation

$$L(\mathbf{x}, \vec{\omega}) = \boxed{T_r(\mathbf{x}, \mathbf{x}_z) L(\mathbf{x}_z, \vec{\omega})}$$
 Reduced (background) surface radiance



Volume Rendering Equation

$$L(\mathbf{x}, \vec{\omega}) = T_r(\mathbf{x}, \mathbf{x}_z) L(\mathbf{x}_z, \vec{\omega}) + \int_0^z T_r(\mathbf{x}, \mathbf{x}_t) \sigma_a(\mathbf{x}_t) L_e(\mathbf{x}_t, \vec{\omega}) dt$$
Accumulated emitted radiance



(Gkioulekas)

Volume Rendering Equation

$$L(\mathbf{x}, \vec{\omega}) = T_r(\mathbf{x}, \mathbf{x}_z) L(\mathbf{x}_z, \vec{\omega})$$

$$+ \int_0^z T_r(\mathbf{x}, \mathbf{x}_t) \sigma_a(\mathbf{x}_t) L_e(\mathbf{x}_t, \vec{\omega}) dt$$

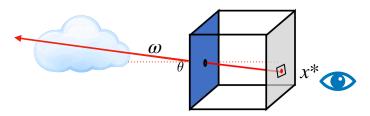
$$+ \int_0^z T_r(\mathbf{x}, \mathbf{x}_t) \sigma_s(\mathbf{x}_t) \int_{S^2} f_p(\mathbf{x}_t, \vec{\omega}', \vec{\omega}) L_i(\mathbf{x}_t, \vec{\omega}') d\vec{\omega}' dt$$
Accumulated in-scattered radiance

Differentiable Rendering

Slides from [Tulsiani, 2024]

Differentiable Volume Rendering

• Volume Rendering Setting

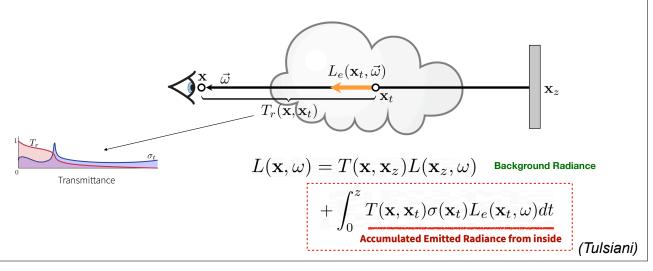


 $\propto L(\mathbf{x}^*, \omega)$

radiance for: x^* = pixel sensor centre, w = direction from x to optical centre

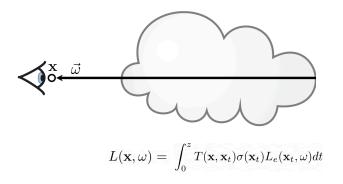
Mathematical Model

• Emission-Absorption Volume Rendering



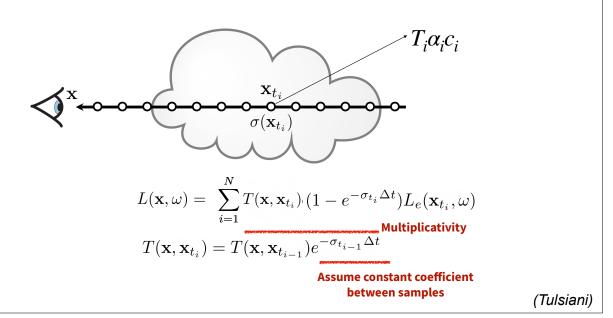
Mathematical Model (simplified)

· Emitted Radiance from Inside Volume

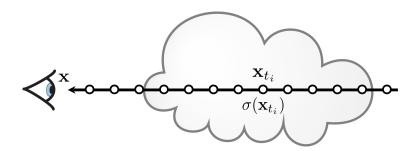


Only the Accumulated Emitted Radiance Term!

Computational Volume Rendering: Ray Marching



Computational Volume Rendering: Ray Marching



- 1. Draw uniform samples along a ray (N segments, or N+1 points)
- 2. Compute transmittance between camera and each sample
- 3. Aggregate contributions across segments to get overall radiance (color)

Rendering Model

· Computation for a Ray

How much light is blocked earlier along ray:

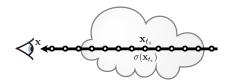
$$T_i = \prod_{j=1}^{i-1} \left(1 - \alpha_j\right)$$

How much light is contributed by ray segment i:

$$\alpha_i = 1 - \exp(-\sigma_i \delta_i)$$

(Tulsiani)

Computational Volume Rendering: A summary



$$\sigma_{t_i} \equiv \sigma(\mathbf{x}_{t_i}) \longrightarrow L(\mathbf{x}, \omega)$$

$$L_e(\mathbf{x}_{t_i}, \omega)$$

If we can compute:

a) (per-point) density

Camera

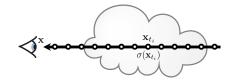
b) (per-point, direction) emitted light, we can render any ray through the medium

Equivalently, we can render an image from any camera viewpoint (using H*W rays)

Note: Differentiable process w.r.t. the density, emitted light

and also camera parameters if density, emission are differentiable functions of position, direction

Volumes: Rendering and Representation



$$\sigma_{t_i} \equiv \sigma(\mathbf{x}_{t_i}) \longrightarrow L(\mathbf{x}, \omega)$$

$$L_e(\mathbf{x}_{t_i}, \omega)$$

Rendering Algorithm

How to represent volumes?

(such that we can compute pointwise density and emitted light)

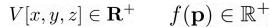
(Tulsiani)

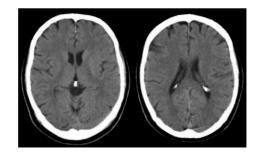
Modeling the Scene

Slides from[Takikawa et al, 2023]]

3D Scene Model

• Density Fields

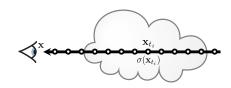




$$f(\mathbf{p}) \in \mathbb{R}^+$$

(Tulsiani)

Volumes: Rendering and Representation

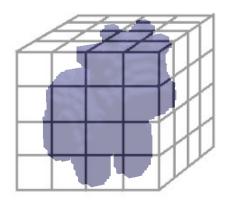


$$\sigma_{t_i} \equiv \sigma(\mathbf{x}_{t_i})$$

$$L(\mathbf{x}, \omega)$$

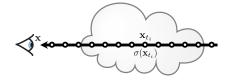
$$L_e(\mathbf{x}_{t_i}, \omega)$$

Rendering Algorithm



Option 1: A grid

Volumes: Rendering and Representation



$$\sigma_{t_i} \equiv \sigma(\mathbf{x}_{t_i}) \longrightarrow L(\mathbf{x}, \omega)$$

$$L_e(\mathbf{x}_{t_i}, \omega)$$

Rendering Algorithm

$$(\mathbf{x},\omega) \longrightarrow \boxed{f_{\theta}} \longrightarrow (\sigma, \mathbf{c})$$

$$\sigma \in \mathbb{R}^+$$
 $\mathbf{c} \in [0,1]^3$

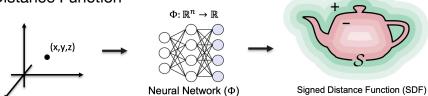
Ensure with designing MLP that density only depends on **x**

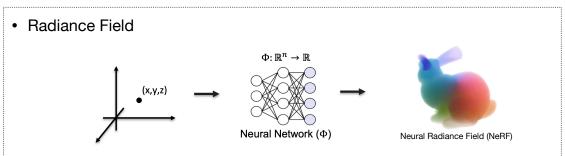
Option 2: An MLP

(Tulsiani)

Neural 3D Scene Models

• Signed Distance Function





(Takikawa)

NeRF

Slides from[Takikawa et al, 2023]]

Neural Radiance Fields

Characteristics

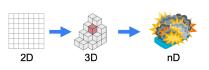
Strengths:

Compactness

Self-regularizing

 $\operatorname{argmin}_{x} \|y - F(x)\| + \lambda P(x).$

Domain agnostic



Weaknesses:

Computationally expensive

Not easily editable

Hard to model semantics and discrete data

Lack of theoretical understanding

(Takikawa)

Reconstruction Domain

Sensor Domain

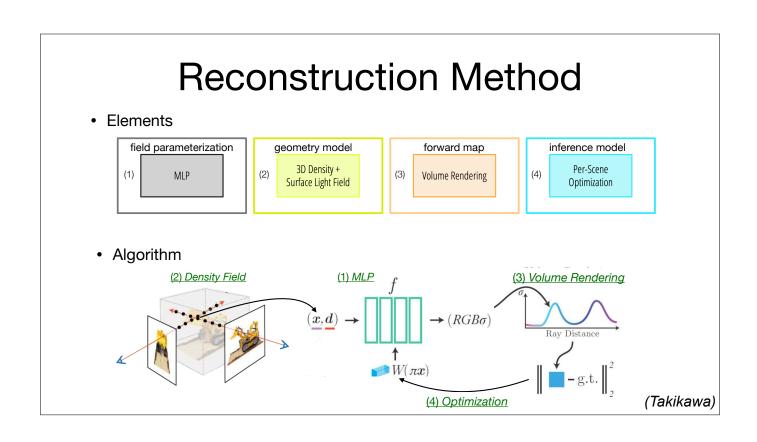
(Takikawa)

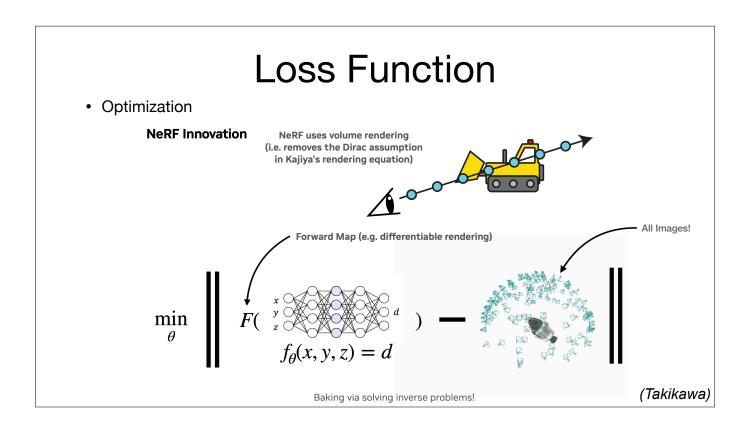
Forward Map

Optimization via gradient descent

Coordinate Sampling

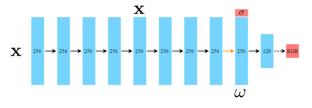
Neural Network





Learning Neural Radiance Fields

1) Acquire multiple images of a scene with associated camera viewpoints



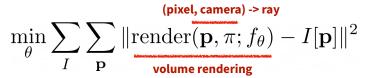
2) Design a neural network $(\sigma, \mathbf{c}) = f_{ heta}(\mathbf{x}, \omega)$

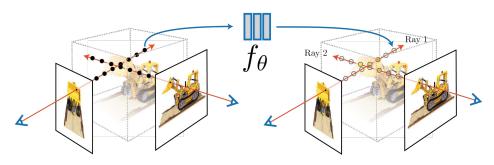
$$\min_{\theta} \sum_{I} \sum_{\mathbf{p}} \| \operatorname{render}(\mathbf{p}, \pi; f_{\theta}) - I[\mathbf{p}] \|^{2}$$

3) Train with a view-synthesis loss using volume rendering

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis.

Learning Neural Radiance Fields

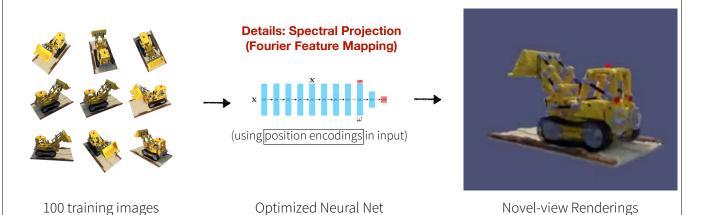




 ${\sf NeRF: Representing \, Scenes \, as \, Neural \, Radiance \, Fields \, for \, View \, Synthesis.}$

(Tulsiani)

Learning Neural Radiance Fields



A great example that 'execution matters'

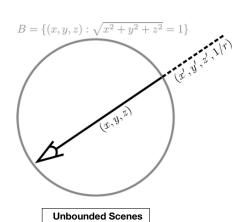
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis.

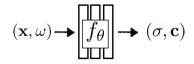
Foreground and Background Radiance

NERF++: ANALYZING AND IMPROVING NEURAL RADIANCE FIELDS

Kai Zhang Cornell Tech

Gernot Riegler Intel Labs Noah Snavely Cornell Tech Vladlen Koltun Intel Labs





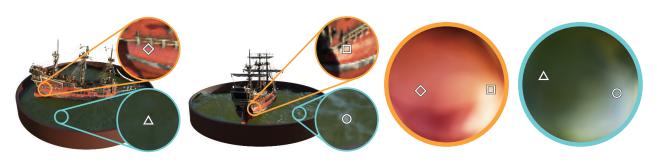
$$(\mathbf{x}', 1/r, \omega) \longrightarrow \boxed{g_{\phi}} \longrightarrow (\sigma, \mathbf{c})$$

A 'background' NeRF uses normalized sphere coordinate and 1/r as input

Uniform sampling for ray segments inside sphere, and 1/r based sampling outside

(Tulsiani)

View-dependent Effects



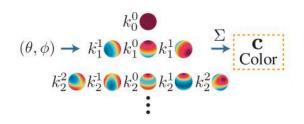
Same 3D point — different color based on viewing direction

 $\hbox{NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis.}$

Do we need Neural Radiance?

Spherical Harmonics: A basis for scalar functions on a sphere

From NeRF to Grids & S.H.



View-dependent color can be inferred via basis coefficients

Plenoxels: Radiance Fields without Neural Networks. Yu et. al.