Omnidirectional Images and Moebius Transformations

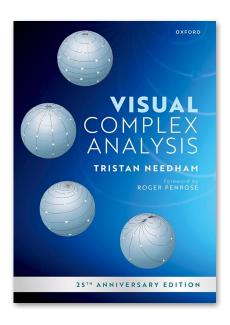
Luiz Velho IMPA

Outline

- Mathematical Fundamentals
 - Complex Projective Geometry
 - Moebius Tranformations
- Applications
 - Wide Field of View
 - Cinema 360

Moebius Transformations

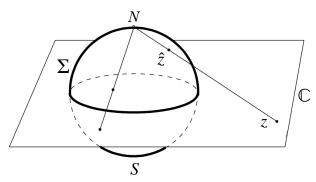
The Book



- Visual Complex Analysis
 - Tristan Needham

Stereographic Projection

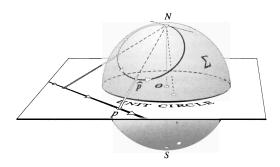
ullet Riemann Sphere Σ and Complex Plane ${\mathbb C}$



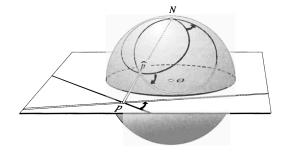
$$\hat{z} = (\theta, \phi) \mapsto z = \cot(\phi/2)e^{i\theta}$$

Properties of Stereographic Projection

- Preserves circles and angles
 - Conformal



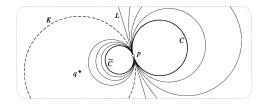
The stereographic image of a line in the plane is a circle on Σ passing through $N=\infty$.



The magnitude of the angle of intersection between the circles is the same at their two intersection points, p and N

Mapping of Stereographic Projection

- ullet The Unity Circle C and the Riemann Sphere Σ
 - (i) the interior of the unit circle C is mapped to the southern hemisphere of Σ and in particular 0 is mapped to the south pole, S;
 - (ii) each point on the unit circle C is mapped to itself, now viewed as lying on the equator of Σ ;
 - (iii) the exterior of the unit circle C is mapped to the northern hemisphere of Σ except that $N=\infty$ is not the image of any finite point in the plane.



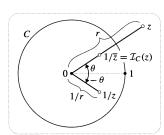
 (iv) <u>Inversion</u> of ℂ in the unit circle induces a reflection of the Riemann sphere in its equatorial plane, ℂ.

Inversion

The image of $z = r e^{i\theta}$ under complex inversion is $1/(r e^{i\theta}) = (1/r) e^{-i\theta}$

- Two-Stage Decomposition
 - i) Send $z=re^{i\theta}$ to $(1/r)e^{i\theta}=(1/\bar{z})$
 - ii) Apply complex conjugation i.e., reflection on the real line $(1/\overline{z}) \mapsto \overline{(1/\overline{z})} = (1/z)$

- Interchanges the interior and exterior of $\ C$
- Each point on C remain fixed
 i.e., C is mapped to itself



$$z \mapsto \mathcal{I}_C(z) = (1/\bar{z})$$

(Geometric) Inversion on C

Möbius Transformations

Complex Map

$$M: \mathbb{C} \mapsto \mathbb{C}$$

• Definition:

$$M(z) = \frac{az+b}{cz+d} \qquad z \in \mathbb{C}$$

with

$$(ad - bc) \neq 0$$

Extended Complex Plane

• Point at Infinity

$$\frac{1}{\infty} = 0 \qquad \qquad \frac{1}{0} = \infty$$

 \bullet Decomposition of $\hat{\mathbb{C}}$

$$\widehat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$$

Complex Projective Space

• Isomorphism

$$z \mapsto w = M(z)$$
 in $\hat{\mathbb{C}}$

induces

$$\hat{z} \mapsto \hat{w}$$
 in Σ

• Geometry and Algebra

Anatomy of M

• Decomposition into Sequence

$$m_4 \circ m_3 \circ m_2 \circ m_1(z)$$

$$m_1(z) = z + \frac{d}{c}$$
 translation

$$m_2(z) = \frac{1}{z}$$
 inversion

$$m_3(z)=rac{(bc-ad)}{c^2}z$$
 scaling and rotation

$$m_4(z) = z + \frac{a}{c}$$
 translation

The Formula (two cases)

• General case $c \neq 0$:

$$M(z) = \frac{az+b}{cz+d} = T_2(S(I(T_1(z)))) = \frac{a}{\underline{c}} + \underbrace{\left(-\frac{ad-bc}{c^2}\right)}_{T_2} \cdot \frac{1}{z+\frac{d}{\underline{c}}}$$

$$- m_1 \equiv T_1$$

$$- m_2 \equiv I$$

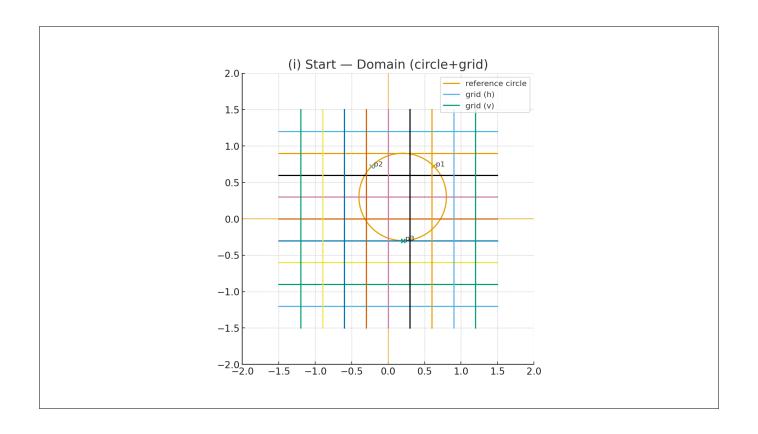
- m C
- $m_3 \equiv S$
- $m_4 \equiv T_2$
- Special case c = 0:

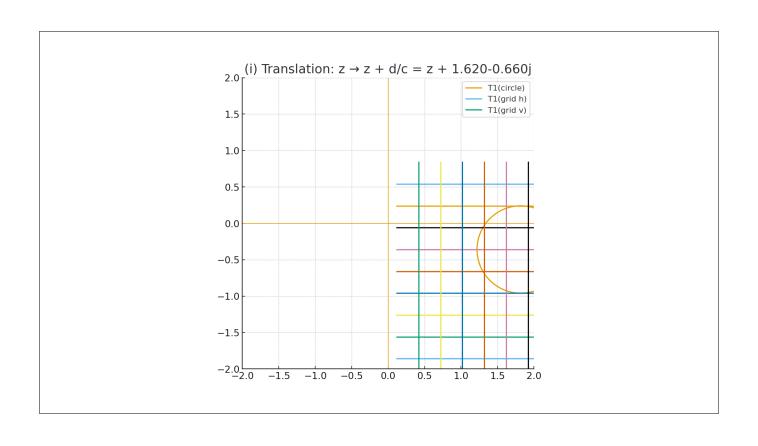
$$M(z) = (a/d)z + (b/d)$$

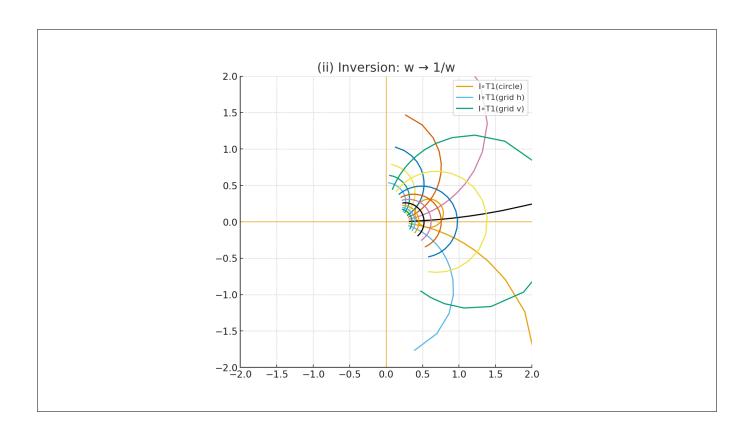
- M is affine (steps reduce to scaling+rotation then translation).

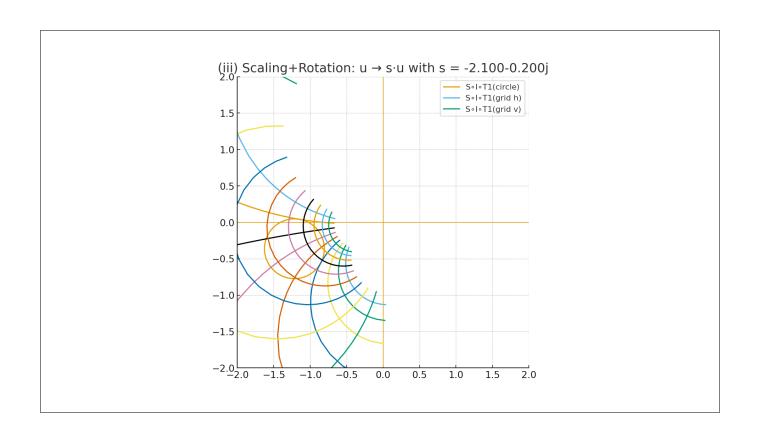
Visualizing the Steps

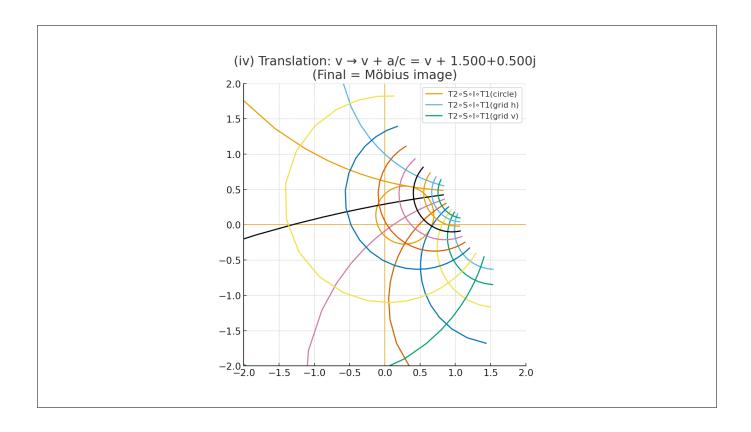
- the geometry on the complex plane (circle + small grid)
 - (i) Start domain (reference circle + grid)
 - (i) After T_1 : translation by d/c
 - (ii) After I: inversion $w\mapsto 1/w$
 - (iii) After S: complex scaling+rotation by $s=-(ad-bc)/c^2$
 - ullet (iv) After T_2 : final translation by a/c (the Möbius image)











Properties of M

- \bullet Projective Linear Group (Lie Group) $PGL(2,\mathbb{C})$
- Preservation of:
 - Circles (lines to circles)
 - Angles (conformal)
 - Symmetry (w.r.t. circles)

Defining M

• Images of 3 points (e.g)

Ratios and Uniqueness

$$\frac{az+b}{cz+d} = M(z) = \frac{kaz+kb}{kcz+kd}$$

Normalization

$$(ad - bc) = 1$$

Homogeneous Coordinates

• Ratio of 2 complex numbers

$$z = \frac{\delta_1}{\delta_2} = [\delta_1, \delta_2] \neq [0, 0]$$

• Two Cases

$$\delta_2 \neq 0$$

$$z = \delta_1/\delta_2$$

$$\delta_2 = 0$$

$$z = \infty$$

Cross Ratio

• The unique

$$z\mapsto w=M(z)$$
 sending

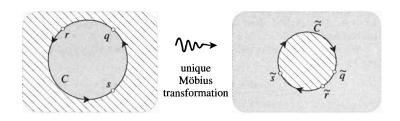
$$q, r, s \mapsto \tilde{q}, \tilde{r}, \tilde{s}$$

$$\frac{(w-\tilde{q})(\tilde{r}-\tilde{s})}{(w-\tilde{s})(\tilde{r}-\tilde{q})} = [w,\tilde{q},\tilde{r},\tilde{s}] = [z,q,r,s] = \frac{(z-q)(r-s)}{(z-s)(r-q)}$$
 (#)

• Theorem: If M maps 4 points $p,q,r,s\mapsto \tilde{p},\tilde{q},\tilde{r},\tilde{s}$ then, the cross-ratio is invariant.

Corollary

Let C be the unique circle through the points q, r, s in the z-plane, oriented so that these points succeed one another in the stated order. Likewise, let \widetilde{C} be the unique oriented circle through \widetilde{q} , \widetilde{r} , \widetilde{s} in the w-plane. Then the Möbius transformation given by (#) maps C to \widetilde{C} , and it maps the region lying to the left of C to the region lying to the left of \widetilde{C} .



Orientation Properties

- Maps Oriented Circles to Oriented Circles
 - s.t. Regions are mapped accordingly

Fixed Points

• Solution of

$$z = M(z)$$

- M has at most two fixed points
 - except for Id.
- For M Normalized

$$\xi_{\pm} = \frac{(a-d)\pm\sqrt{(a+d)^2-4}}{2c}$$

M - Classification

ullet Fixed Point at Infinity : c=0

$$M(z) = Az + B$$

- Basic Types
 - Elliptic
 - Hyperbolic
 - Loxodromic
 - Parabolic

Elliptic Transform

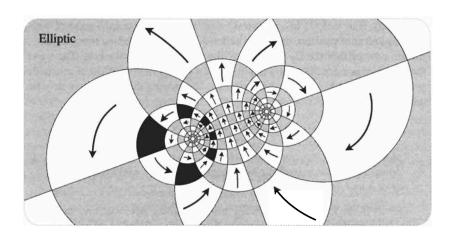
Rotation

$$z\mapsto e^{i\alpha}z$$

• two fixed points

$$(0,\infty)$$

Elliptic Transform in $\mathbb C$



Hyperbolic Transform

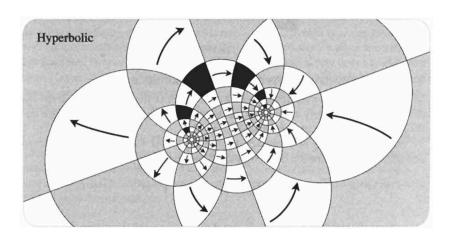
Scaling

$$z \mapsto \rho z$$

• two fixed points

$$(0,\infty)$$

Hyperbolic Transform in ${\mathbb C}$



Loxodromic Transform

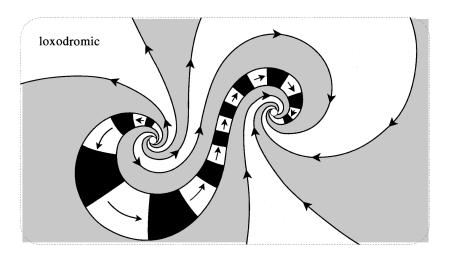
Rotation and Scaling

$$z\mapsto \rho e^{i\alpha}z$$

• two fixed points

(combination of elliptic and hyperbolic)

Loxodromic Transform in $\mathbb C$



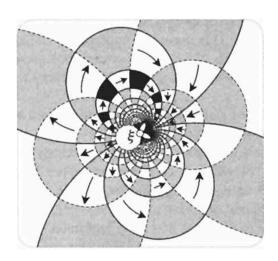
Parabolic Transform

• Translation

$$z \mapsto z + b$$

• one fixed point at

Parabolic Transform in $\mathbb C$



Applications

360 Cinema

Authoring Issues

- Passive
 - **–** 360 Movies
- Interactive
 - Google Street View
- Immersive
 - AR Immersive Cinema

360 Camera

Camera Moves

Track Pan / Tilt Zoom

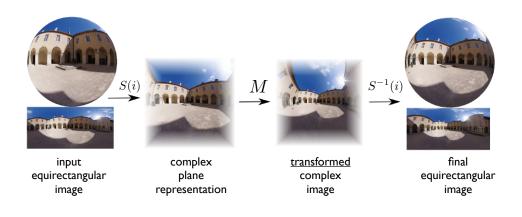
yes maybe
?

Math of Camera Moves

- Omnidirectional Images + Moebius Transformations
 - Pan / Tilt ⇔ Elliptic Transform
 - Zoom ⇔ Hyperbolic Transform
 - Perspective ⇔ Parabolic Transform ?

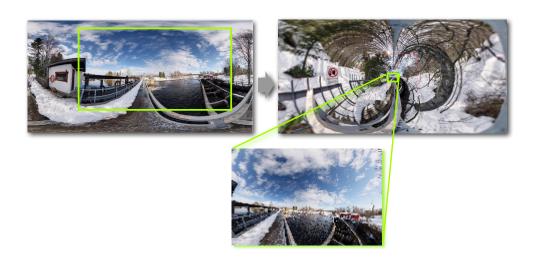
Transformation Pipeline

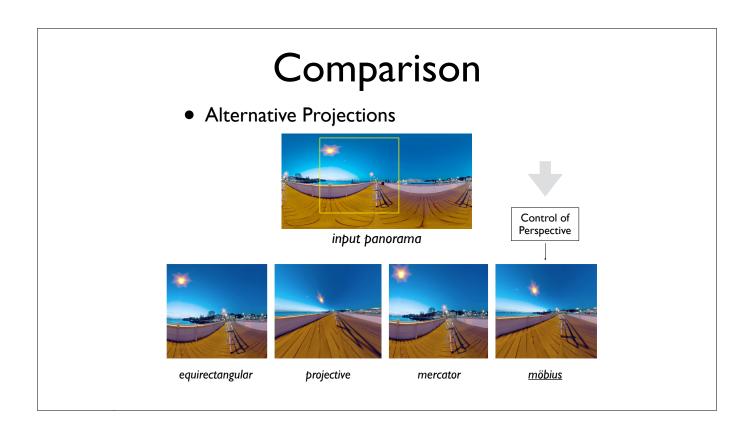
• Möbius Mapping



Hyperbolic Transform (Example)

• Extreme Zoom





Research @ VISGRAF Lab

Moebius Transformations for Manipulation and Visualization of Spherical Panoramas

- Collaboration with
 - Leonardo Koller Sacht
 - Luis Penaranda

Video 1

Different scales applied to an equi-rectangular image

Follow-Up Work

- Preserving Lines
- Perspective Control

Improving Projections of Panoramic Images with Hyperbolic Möbius Transformations

L. Peñaranda L. Sacht L. Velho

IMPA

Tools

Mantra-VR

• Premiere Plug-In

VFX

Animated Distortions

