# Fast Differentiable Rendering with 3D-GS

Based on slides from [Takikawa et al, 2023] and [Tulsiani, 2024]

# **Outline**

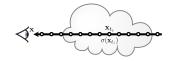
- Differentiable Primitive Rendering
- · Gaussian Splatting

3D Gaussian Splatting

3DGS: Differentiable Primitive Rendering

Slides from S. Tulsiani and V. Sitzmann

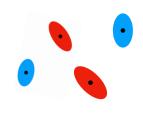
# Volumes: Rendering and Representation



$$\sigma_{t_i} \equiv \sigma(\mathbf{x}_{t_i}) \longrightarrow L(\mathbf{x}, \omega)$$

$$L_e(\mathbf{x}_{t_i}, \omega)$$

Rendering Algorithm

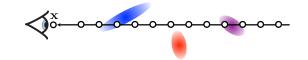


Option 3: 3D Gaussian Splats

(Tulsiani)

# Rendering Primitives (e.g. Gaussians)

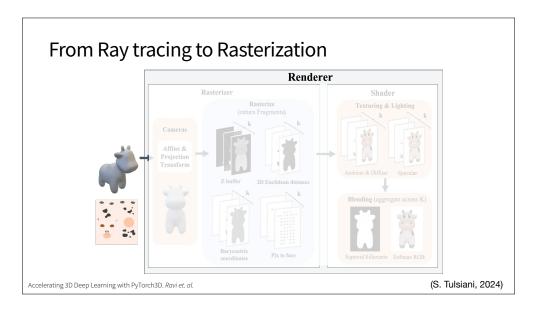
Ray Marching

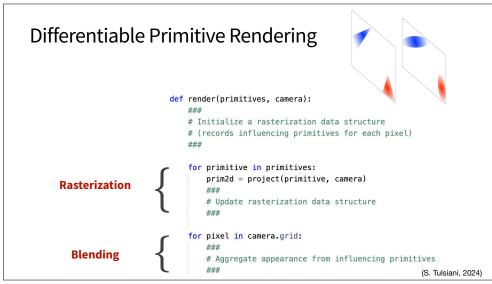


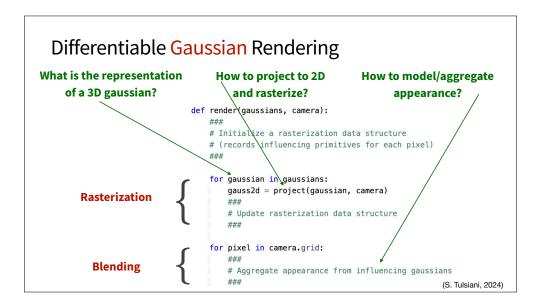
1. Draw samples along the ray

2. Aggregate their contributions to render

(S. Tulsiani, 2024)









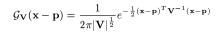
# Differentiable Gaussian Rendering

What is the representation of a 3D gaussian?

How to project to 2D

How to model/aggregate appearance?



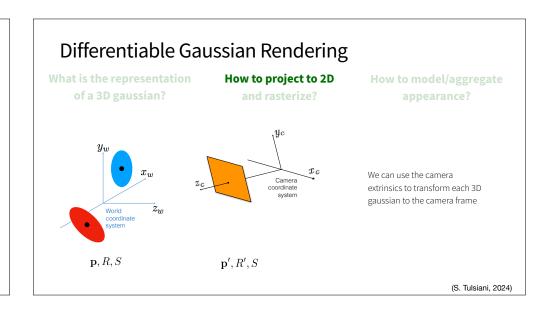


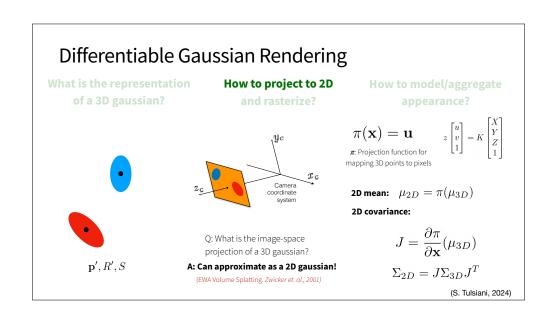
Factorize as scale and rotation:  $\mathbf{V} = RSS^TR^T$ 



Each gaussian also has an opacity and view-dependent color (via SH coefficients):  $\alpha$  ,  ${\bf C}$ 

Slide adapted from Vincent Sitzmann. (S. Tulsiani, 2024)





#### Differentiable Gaussian Rendering

What is the representation of a 3D gaussian?

How to project to 2D and rasterize?

How to model/aggregate appearance?



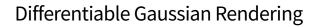
 $\mu_{2D} = \pi(\mu_{3D})$ 

 $\Sigma_{2D} = J \Sigma_{3D} J^T$ 

- 1. Sort gaussians from closest to furthest from the camera
- 2. For each pixel  ${\bf u}$ , compute opacity for each gaussian  ${\mathcal G}_k$ :

$$\bar{\alpha}_k = \alpha_k \frac{e^{-(\mathbf{u} - \mu_{2D}^k)^T (\Sigma_{2D}^k)^{-1} (\mathbf{u} - \mu_{2D}^k)}}{2\pi |\Sigma_{2D}^k|^{0.5}}$$

(In practice, can rasterize 'blocks' instead of entire image as not all gaussians influence all blocks) (S. Tulsiani, 2024)



What is the representation of a 3D gaussian?

How to project to 2D and rasterize?

How to model/aggregate appearance?



Compute per-gaussian weights based on opacities of current and previous gaussians:

$$w_k = \bar{\alpha}_k \ \Pi_{j=1}^{k-1} (1 - \bar{\alpha}_j)$$

Use per-gaussian SH coefficients and ray direction to get view-dependent color  $\mathbf{c}_k$ 

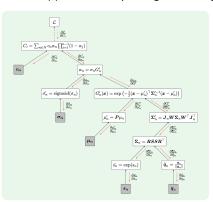
Aggregate to obtain pixel color:

$$\mathbf{c} = \sum_{k} w_k \mathbf{c}_k$$

(S. Tulsiani, 2024)

# Computational Graph (gsplat)

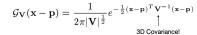
• Forward (↑) and Backward (↓) Gaussian Splatting Rendering Function



#### Properties of Gaussians for Rendering

Gaussians are closed under affine transforms, integration





Affine mapping  $\Phi = Mx + p$  of coordinates (such as <u>cam2world</u> matrix!):

$$\mathcal{G}_{\mathbf{V}}(\Phi^{-1}(\mathbf{u}) - \mathbf{p}) = \frac{1}{|\mathbf{M}^{-1}|} \mathcal{G}_{\mathbf{M}\mathbf{V}\mathbf{M}^T}(\mathbf{u} - \Phi(\mathbf{p}))$$





$$\mathbf{V} = \begin{pmatrix} a & b & c \\ b & d & e \\ c & e & f \end{pmatrix} \Leftrightarrow \begin{pmatrix} a & b \\ b & d \end{pmatrix} = \hat{\mathbf{V}}$$

(V. Sitzmann, 2024)

#### **Transform Gaussians into Camera** Coordinates



Cam2world is affine mapping  $\phi(x) = \mathbf{W}\mathbf{x} + \mathbf{p}$ :

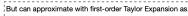
$$\mathcal{G}_{\mathbf{V}_k''}(\varphi^{-1}(\mathbf{u}) - \mathbf{t}_k) = \frac{1}{|\mathbf{W}^{-1}|} \mathcal{G}_{\mathbf{V}_k'}(\mathbf{u} - \mathbf{u}_k) = r_k'(\mathbf{u})$$

Projection  $\mathbf{m}(u)$  is *not* an affine mapping :/



$$\begin{pmatrix} x_0 \\ x_1 \\ x_2 \end{pmatrix} = \mathbf{m}(\mathbf{u}) = \begin{pmatrix} u_0/u_2 \\ u_1/u_2 \\ \|(u_0, u_1, u_2)^T\| \end{pmatrix}$$

$$\begin{pmatrix} u_0 \\ u_1 \\ u_2 \end{pmatrix} = \mathbf{m}^{-1}(\mathbf{x}) = \begin{pmatrix} x_0/l \cdot x_2 \\ x_1/l \cdot x_2 \\ 1/l \cdot x_2 \end{pmatrix},$$



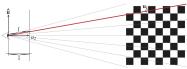
$$\mathbf{m}_{\mathbf{u}_k}(\mathbf{u}) = \mathbf{x}_k + \mathbf{J}_{\mathbf{u}_k} \cdot (\mathbf{u} - \mathbf{u}_k) \qquad \mathbf{J}_{\mathbf{u}_k} = \frac{\partial \mathbf{m}}{\partial \mathbf{u}}(\mathbf{u}_k)$$

(V. Sitzmann, 2024)





# Transform Gaussians into Camera Coordinates





But can approximate with first-order Taylor Expansion as:

$$\mathbf{m}_{\mathbf{u}_k}(\mathbf{u}) = \mathbf{x}_k + \mathbf{J}_{\mathbf{u}_k} \cdot (\mathbf{u} - \mathbf{u}_k) \qquad \mathbf{J}_{\mathbf{u}_k} = rac{\partial \mathbf{m}}{\partial \mathbf{u}}(\mathbf{u}_k)$$

Projected, 2D Gaussians are then:

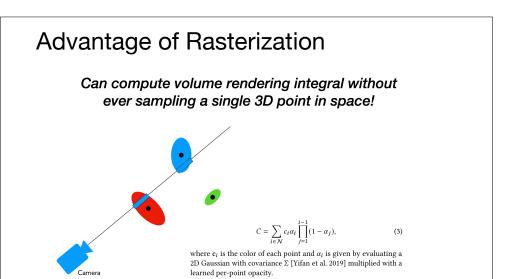
$$\frac{1}{|\mathbf{W}^{-1}||\mathbf{J}^{-1}|}\mathcal{G}_{\mathbf{V}_k}(\mathbf{x}-\mathbf{x}_k)$$

$$\mathbf{V}_k = \mathbf{J} \mathbf{V}_k' \mathbf{J}^T = \mathbf{J} \mathbf{W} \mathbf{V}_k'' \mathbf{W}^T \mathbf{J}^T.$$

Finally, can integrate along rays

$$\begin{array}{lcl} q_k(\hat{\mathbf{x}}) & = & \displaystyle \int_{\mathbb{R}} \frac{1}{|\mathbf{J}^{-1}||\mathbf{W}^{-1}|} \mathcal{G}_{\mathbf{V}_k}(\hat{\mathbf{x}} - \hat{\mathbf{x}}_k, x_2 - x_{k2}) \, dx_2 \\ & = & \displaystyle \frac{1}{|\mathbf{J}^{-1}||\mathbf{W}^{-1}|} \mathcal{G}_{\hat{\mathbf{V}}_k}(\hat{\mathbf{x}} - \hat{\mathbf{x}}_k) \end{array}$$

(V. Sitzmann, 2024)



(V. Sitzmann, 2024)

