Geometry for Graphics and Vision

Luiz Velho IMPA

Computer Graphics

Geometries

- Euclidean Geometry
- Projective Geometry

The Euclidean Space

Euclidean Space

Definitions

Properties

- N-Dimensional Vector Space (N = 2, 3)
- · Inner Product
- · Natural Coordinate System

Tools

· Linear Algebra

Elements and Operations

- Vector Type
 - Constructor / Destructor $x = [x_1, x_2]$
- Vector Operations

- Add
$$v + w = [v_1 + w_1, v_2 + w_2]$$

- Scale
$$\lambda x = [\lambda x_1, \lambda x_2]$$

• **Null Vector** [0,0]

Metric Properties

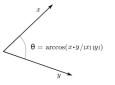
$$a \cdot b = \sum_{i=1}^{n} a_i b_i = a_1 b_1 + \dots + a_n b_n$$

• Length and Distance

$$\parallel a \parallel = \sqrt{a^2}$$
$$\parallel a - b \parallel$$

Angle

$$a \cdot b = \parallel a \parallel \parallel b \parallel \cos \theta$$

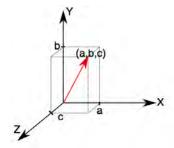


• Unity Vectors

$$\hat{b} = b/\|b\|$$

Coordinates and Bases

· Canonical Basis



• Coordinate Frame

Euclidean Transformations

Linear Operators

$$T: \mathbb{R}^n \to \mathbb{R}^n$$

Definition

$$\begin{array}{l} T(u+v) = T(u) + T(v) \\ T(\lambda v) = \lambda T(v) \end{array}$$

- Invertible
- · Linear Invariance
 - Subspaces -> Subspaces
 (lines -> lines)
 (origin -> origin)
- · Examples
 - o Scaling
 - o Rotation
 - o Shear

Matrix Representation

- M Matrix n x n
- Isomorphism
 - · Algebra of Linear Operators
 - · Algebra of Matrices
- $T \leftrightarrow M$

$$x' = T(x)$$
$$v \to Mv$$

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} ax + by \\ cx + dy \end{array}\right) = \left(\begin{array}{c} x' \\ y' \end{array}\right)$$

Isometries

- · Metric Preserving
 - ||Tv|| = ||v||
 - Invertible
 - · Orthonormal Matrix
 - Transformations
 - Rotation
 - Miror
- OBS: Translation
 - · Is a Isometry
 - But Cannot be Represented by a Matrix
 - Not a Linear Transformation

Affine Transformations

$$A(x) = M(x) + t$$

Preserve

- Ratios
- Proportions

Transformations

- · Linear Transformations
- Translations

OBS: Matrix is not sufficient

Operations: Assessment & Discussion

Properties of Affine Transformations

- Concepts
 - Congruency
 - Similarity
- · Transformations
 - Rigid Motions (Isometry)
 - Uniform Scaling (angle)
- Invariant
 - Angles
 - o Parallelism

Natural Operations for Modeling

No Unified Representation $v \rightarrow Mv + t$

The Projective Space

Projective Space (2D)

Model of Projective Plane

· Point in Real 2D Projective Space

$$p \in RP^2$$

 $p = (\lambda x_1, \lambda x_2, \lambda x_3) : \lambda \neq 0$

· Equivalence Relation

$$p=(x_1,x_2,x_3)\equiv \lambda p$$

$$RP^2 := \mathbb{R}^3 - \{(0,0,0)\}$$

3D Projective Transformations

Properties

· Linear Operator in R4

$$T: \mathbb{R}^4 \to \mathbb{R}^4$$

T given by M

$$M$$
, matrix 4×4

· Projective Transformation Induced by T

$$T(p) = M p$$

· Note

$$T(p) = \lambda T(p), \lambda \neq 0$$

Anatomy of a Matrix

$$M = \left(\begin{array}{cc} A & T \\ P & S \end{array}\right)$$

A-Linear Block [3 x 3]

T - Translation Block [3 x 1]

P - Perspective Block [1 x 3]

S - Scaling Block [1 x 1]

Basic Transformations

- Identity
- Scaling
- Translation
- Perspective
- Rotation

Scaling

• Uniform / Non-Uniform

$$\begin{bmatrix} a & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & k & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• OBS: Identity a = f = k = 1

Translation

$$\left(\begin{array}{cccc} 1 & 0 & 0 & d \\ 0 & 1 & 0 & h \\ 0 & 0 & 1 & l \\ 0 & 0 & 0 & 1 \end{array}\right)$$

Perspective

• Viewing Transformation

$$\left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ m & n & p & 1 \end{array}\right)$$

Rotation

• Multiple Representations

- Orthogonal Matrix with determinant 1: $M_{3\times3}$

- Euler Angles : $R_x(\theta)R_y(\phi)R_z(\gamma)$

- Rotation Axis / Angle : $(\theta, \hat{x}, \hat{y}, \hat{z})$

- Quaternion : $q = q_0 + iq_1 + jq_2 + kq_3$

- Rotor (Geometric Algebra) : $R \in Spin(V)$

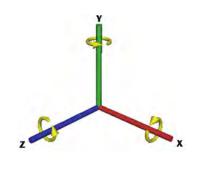
Conversion btw Representations

- Computation / Derivatives
 - Exponential Map

Standard Rotations

• Euler Angles - Rotation Matrices

$$R_x(heta) = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & \cos heta & -\sin heta \ 0 & \sin heta & \cos heta \end{bmatrix}$$
 $R_y(heta) = egin{bmatrix} \cos heta & 0 & \sin heta \ 0 & 1 & 0 \ -\sin heta & 0 & \cos heta \end{bmatrix}$ $R_z(heta) = egin{bmatrix} \cos heta & -\sin heta & 0 \ \sin heta & \cos heta & 0 \ 0 & 0 & 1 \end{bmatrix}$



OBS: Gimbal Lock

Other Transformations

- Mirror
- Shear
- Skew

Computer Vision

Topics

Cameras → Images

Plenoptic Function → Light Field

- Projective Geometry
- Camera Calibration

Projective Geometry

- Camera
 - Projection 3D => 2D
- Types of Projection
 - Orthographic (Affine)
 - Perspective
 - Etc..

Vision Problems

Basic Equation

(correspondence)
$$u \in I \subset \mathbb{R}^2$$
, $x \subset \mathbb{R}^3$

$$u = Px$$

• Camera Calibration

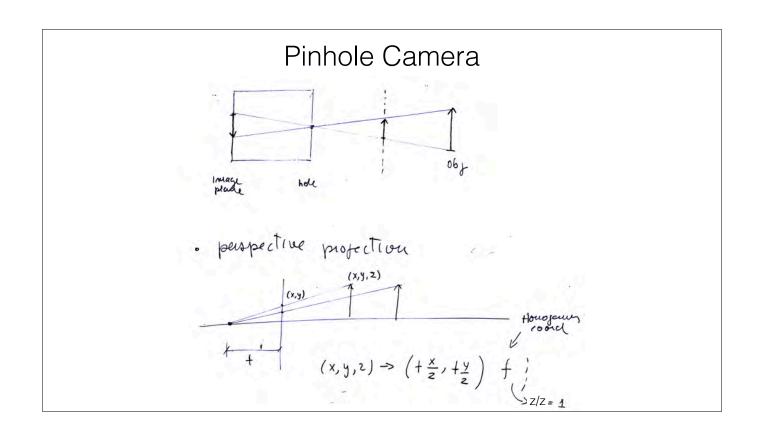
$$u = P x$$

• Shape Reconstruction

$$u = P(x)$$

Variants of the Problem

- One Image
- Many Images
- Depth Image..



Projective / Affine Geometry

• Perspective Transformation

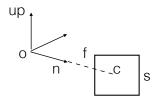
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/f & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z/f \end{bmatrix} \Rightarrow \left(f \frac{x}{z}, f \frac{y}{z} \right)$$
$$\Rightarrow (u, v)$$

• Weak Perspective : $f \rightarrow \infty$ (parallel projection)

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} - Affine Geometry$$

Vision / Graphics

• Camera Model

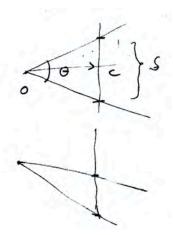


- Camera Parameters
 - Position: o
 - Orientation: up, n
 - Focal Distance: f
 - Image Center: c
 - Image Size: s

Field of View

View Camera





Camera Transformation

$$u=w_d$$
 TSP RT x

$$u = K$$
 $\begin{bmatrix} R \mid T \end{bmatrix}$ x

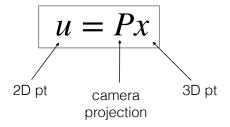
3 x 4

OBS:

$$\begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & 1 \end{bmatrix} \xrightarrow{\text{projective transform} \\ \text{(scale - normalization)}}$$

PS: Compare with CG

Fundamental Equation



$$u = [KA]x$$

intrinsic extrinsic (projection) (affine)

Variants

- Single View
 - Many Points, One Camera

$$u_i = Px_i$$

- Multi View
 - Many Points, Various Cameras (i.e., Images)

$$u_{ik} = P_k x_i$$

Strategy

- Correspondence
 - Key Assumption
 - I. Single View (pattern recognition)

Given 3D object and image, Find pairs (u_i, x_i)

II. Multi View (feature matching / tracking)

Given N images, Find pairs $(u_i, u_j)_{i \leftrightarrow j}$

Camera Calibration

Calibration, Calibration, Calibration,....

• Inverse Problem

$$u_{ik} = P_k x_i$$

assuming correspondences compute **x** and/or **P**

• OBS: Graphics is Direct Problem

$$Px = u$$

Single View Metrology

$$u_i = Px_i$$

- Problems
 - Camera Calibration:

Given (u_i, x_i) , find P

- Single View Reconstruction:

Given $(\bar{u}\bar{v})_i$, find P

- Concepts
 - Absolute Conic

Multi View Metrology

$$u_{ik} = P_k x_i = [K_k A_k] x_i$$

- Problems
 - Stereo Reconstruction:

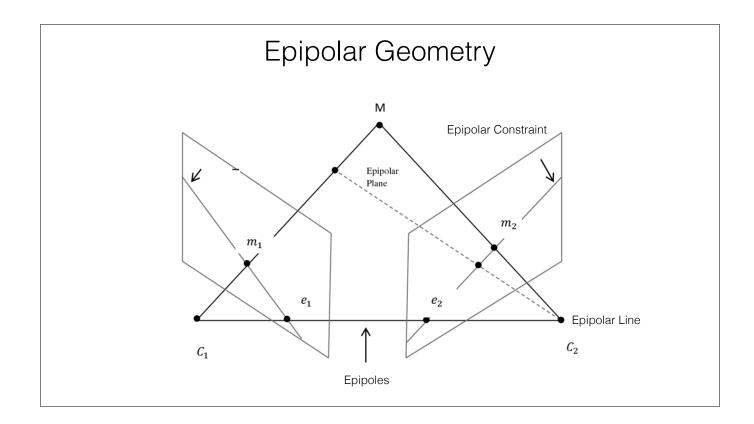
Given (u_{i0}) and P_0, P_1 find (u_{i1})

- Structure from Motion (SFM):

Given $(u_i,u_j)_{i \leftrightarrow j}$ and K_k find $A_k,x_{i \leftrightarrow j}$

- Self Calibration:

Given $(u_i, u_j)_{i \leftrightarrow j}$, find $P_k = [KA]_k$



Concepts

• Fundamental Matrix

(K unknown)

$$x^T F x = 0$$
 8 pt Algorithm (self calibration)

Essential Matrix

(K known)

$$E = x^T F x$$

$$\downarrow \qquad \qquad \text{(SFM)}$$

$$metric object$$