

Paper Presentation — RomniStereo

360 e-2-e: Analysis and Synthesis of Omnidirectional Video

Rafael Romeiro

November 11, 2025

Paper

RomniStereo: Recurrent Omnidirectional Stereo Matching

Hualie Jiang, Rui Xu, Minglang Tan and Wenjie Jiang Insta360 Research, Shenzhen, China

IEEE Robotics and Automation Letters, 2024

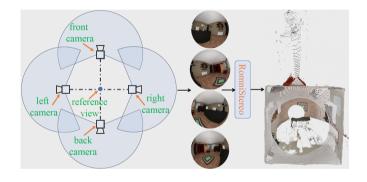
Problem Statement

Omnidirectional Stereo Matching

• Depth sensing

Rig of 4 fisheye cameras

- Wide baseline
- FoV $> 180^{\circ}$



Previous Work

SweepNet: Wide-baseline Omnidirectional Depth Estimation

Changhee Won, Jongbin Ryu and Jongwoo Lim Hanyang University, Seoul, Korea International Conference on Robotics and Automation (ICRA), 2019

OmniMVS: End-to-End Learning for Omnidirectional Stereo Matching

Changhee Won, Jongbin Ryu and Jongwoo Lim Hanyang University, Seoul, Korea IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2020

Previous Work

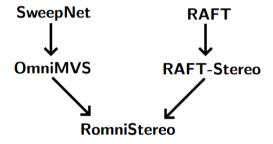
RAFT: Recurrent All-Pairs Field Transforms for Optical Flow

Zachary Teed and Jia Deng Princeton University, New Jersey, United States European Computer Vision Association (ECVA), 2020

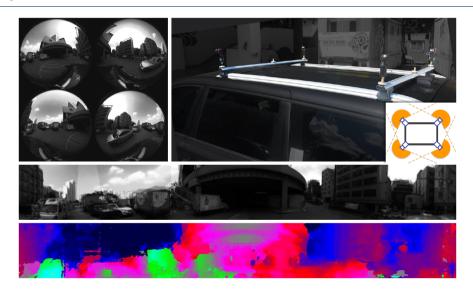
RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching

Lahav Lipson, Zachary Teed and Jia Deng Princeton University, New Jersey, United States International Conference on 3D Vision (3DV), 2021

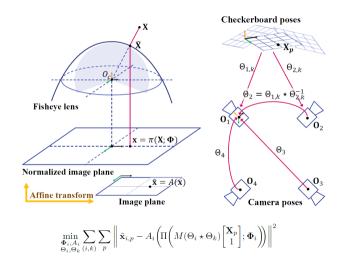
Previous Work



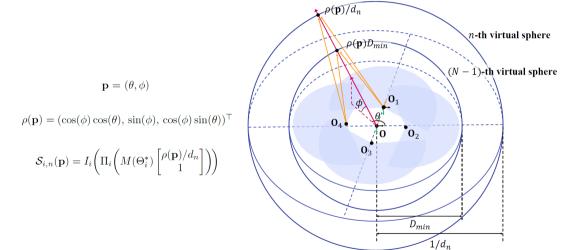
SweepNet



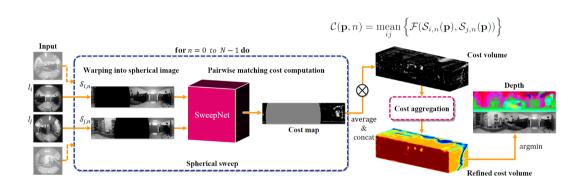
SweepNet - Camera Calibration



SweepNet - Spherical Sweeping



SweepNet - Flowchart



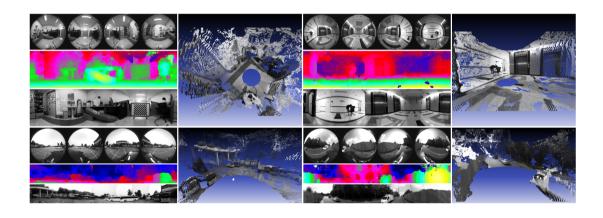
SweepNet - Architecture

The architecture of the proposed network is detailed in Table I. As shown in Fig. 4, the input of the network is a pair of gray scale spherical images acquired from (1). To ensure that the horizontal ends are connected, we add the circular column padding to the input spherical images. The conv1 \sim 18 layers are Siamese residual blocks [31] for learning the unary feature extraction. We reduce the size of the input image in half for the larger receptive field, which helps the network learns from global context. The output feature maps are concatenated, and then the features are upsampled using transposed convolution. Finally, the network outputs the $W \times H$ cost map which ranges from 0 to 1, through fully connected layers and a sigmoid layer.

Layer	Property	Output Dim.
input	add circular column padding	$(W+4) \times H$
conv1 conv2 conv3 conv4-17 conv18	$\begin{array}{c} 5\times5,32,\mathrm{s}2,\mathrm{p}_{W}0,\mathrm{p}_{H}2\\ 3\times3,32,\mathrm{s}1,\mathrm{p}1\\ 3\times3,32,\mathrm{s}1,\mathrm{p}1,\mathrm{addconv}1\\ \mathrm{repeatconv}2\text{-}3\\ 3\times3,32,\mathrm{s}1,\mathrm{p}1 \end{array}$	$\frac{1}{2}W \times \frac{1}{2}H \times 32$
concat		$\frac{1}{2}W \times \frac{1}{2}H \times 64$
conv19 deconv1 conv20 fc1-4 fc5	3 × 3, 128, s 1, p 1 3 × 3, 128, s 2, p 1 3 × 3, 128, s 1, p 1 1 × 1, 256 1 × 1, 1, no ReLu	$\begin{array}{c} \frac{1}{2}W \times \frac{1}{2}H \times 128 \\ W \times H \times 128 \\ W \times H \times 128 \\ W \times H \times 256 \\ W \times H \end{array}$
sigmoid		$W \times H$

TABLE I: SweepNet has 20 convolutional layers and a transposed convolutional layer followed by 5 fully connected layers. Each properties (s, p) means (stride, padding) in the convolutional block.

SweepNet - Results

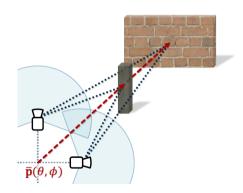


SweepNet - Core Idea and Limitations

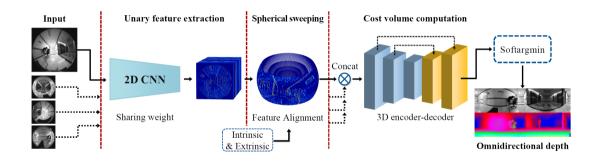
- Introduced spherical sweeping
- At each depth hypothesis, pairs of spherical images are compared using a 2D CNN that scores the matching cost
- Network ignores spatial smoothness of neighboring pixels' depth
- No learning-based depth regression

OmniMVS - The end-to-end approach

- Integrates spherical sweeping into an end-to-end deep stereo pipeline
- Instead of predicting costs per sweep independently, constructs a full spherical cost volume and processes it with a 3D CNN exploiting spatial and depth consistency
- Learns to regress continuous depth rather than picking the minimum cost



OmniMVS - Flowchart



OmniMVS - Architecture

The architecture of the proposed network is detailed in Table 1. The input of the network is a set of grayscale fisheye images. We use the residual blocks [9] for the unary feature extraction, and the dilated convolution for the larger receptive field. The output feature map size is half (r=2) of the input image. Each feature map is aligned by the spherical sweeping (Sec. 3.2), and transferred to the spherical feature by a 3×3 convolution. The spherical feature maps are concatenated and fused into the 4D initial cost volume by a $3\times3\times3$ convolution. We then use the 3D encoder-decoder architecture [14] to refine and regularize the cost volume using the global context information.

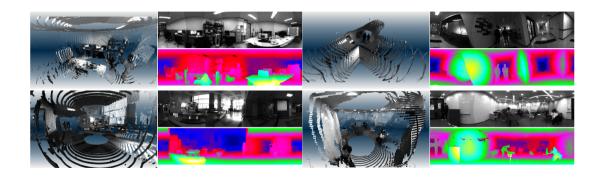
Finally, the inverse depth index \hat{n} can be computed by the softargmin [14] as

$$\hat{n}(\theta, \phi) = \sum_{n=0}^{N-1} n \times \frac{e^{-\mathcal{C}(\phi, \theta, n)}}{\sum_{\nu} e^{-\mathcal{C}(\phi, \theta, \nu)}}$$

where C is the $(H \times W \times N)$ regularized cost volume.

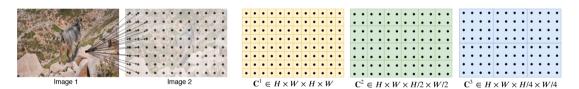
	Name	Layer Property	Output (H, W, N, C)					
Unary feature extraction	Input conv1 conv2 conv3 conv4-11	$5 \times 5, 32$ $3 \times 3, 32$ $3 \times 3, 32, \text{add conv1}$ repeat conv2-3 repeat conv2-3 with dilate = 2, 3, 4	$\left.\begin{array}{c} H_I \times W_I \\ \\ \\ \\ \end{array}\right\}_{1/2H_I \times 1/2W_I \times 32}$					
Spherical sweeping	warp transference	$3 \times 3 \times 1,32$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
Sphe	concat(4)* fusion	$3 \times 3 \times 3,64$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
Cost volume computation	3Dconv1-3 3Dconv4-6 3Dconv7-9 3Dconv10-12 3Dconv13-15 3Ddeconv1 3Ddeconv2 3Ddeconv3 3Ddeconv4 3Ddeconv5	$\begin{array}{c} 3\times 3\times 3, 64\\ \text{from } 1, 3\times 3\times 3, 128\\ \text{from } 4, 3\times 3\times 3, 128\\ \text{from } 7, 3\times 3\times 3, 128\\ \text{from } 7, 3\times 3\times 3, 128\\ \text{add 3Dconv12}\\ 3\times 3\times 3, 128,\\ \text{add 3Dconv9}\\ 3\times 3\times 3, 128,\\ \text{add 3Dconv6}\\ 3\times 3\times 3, 64,\\ \text{add 3Dconv3}\\ 3\times 3\times 3, 14\\ \end{array}$	$\begin{array}{c} 1/2 \times 1/2 \times 1/2 \times 64 \\ 1/4 \times 1/4 \times 1/4 \times 1/4 \times 128 \\ 1/8 \times 1/8 \times 1/8 \times 1.28 \\ 1/16 \times 1/16 \times 1/16 \times 128 \\ 1/16 \times 1/16 \times 1/16 \times 128 \\ 1/32 \times 1/32 \times 1/32 \times 256 \\ 1/16 \times 1/16 \times 1/16 \times 128 \\ 1/8 \times 1/8 \times 1/8 \times 128 \\ 1/4 \times 1/4 \times 1/4 \times 128 \\ 1/2 \times 1/2 \times 1/2 \times 64 \\ H \times W \times N \end{array}$					
	softargmin		$H \times W$					

OmniMVS - Results

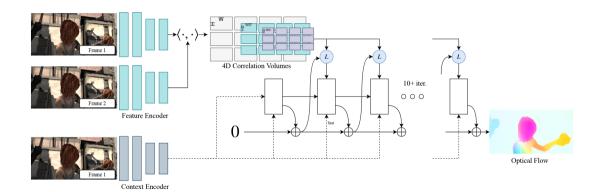


RAFT

- Estimate 2D motion vectors between two consecutive images (optical flow)
- Compute correlations between all pixel pairs (dense 4D cost volume)



RAFT - Flowchart

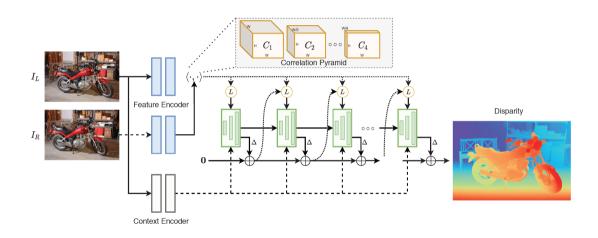


RAFT - Results

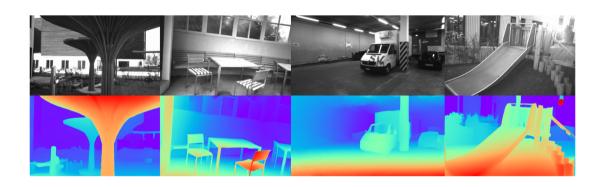
RAFT-Stereo

- RAFT assumes **temporal** consistency; stereo has **geometric** consistency
- Adapt the recurrent update framework from 2D optical flow to 1D stereo disparity
- Redesig the correlation computation and update rules to exploit the epipolar constraint
- Introduces a multi-level recurrent framework: estimates disparity at coarse resolution, refines iteratively at higher resolutions

RAFT-Stereo - Flowchart



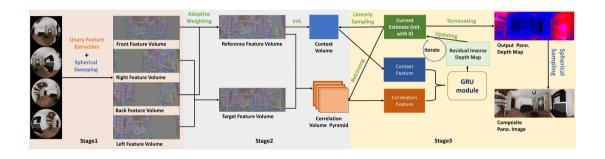
RAFT-Stereo - Results



RomniStereo

- Proposes an opposite adaptive weighting scheme that transforms the output of spherical sweeping into the inputs required by the recurrent update network
- Bridge between OmniMVS and RAFT-Stereo
- Avoid heavy 3D encoder-decoder cost-volume regularisation

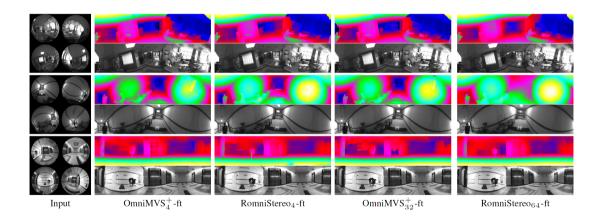
RomniStereo - Flowchart



RomniStereo - Opposite adaptive weighting

- Multi-Layered Perceptron (MLP) with sigmoid activation
- Grid Embedding: Concatenate the the normalized spherical grid coordinates $G_i(\theta, \phi, n)$ to the feature volumes input to the MLP. That is, input to MLP = $[S_a, S_b, G]$ at each location.
- The weighting allows the network to learn which camera view offers better feature information at each spherical cell (depending on occlusion, coverage, view-angle, etc.)
- Smooth blending avoids harsh seams or visible switching artifacts

RomniStereo - Qualitative Comparison



RomniStereo - Quantitative Comparison

Dataset			OmniTh	ings		OmniHouse					Run Time
Metric	>1	>3	>5	MAE	RMS	>1	>3	>5	MAE	RMS	(s)
Non-learning based method											
Sphere-Stereo [23]	80.01	56.67	44.06	9.14	14.06	65.84	27.29	12.84	2.82	4.60	0.21
Trained on OmniThings only											
OmniMVS ₄ ⁺ [12]	46.01	21.00	13.59	2.97	6.48	37.77	13.80	7.43	1.88	3.93	0.11
RomniStereo ₄	35.61	17.05	11.46	2.52	6.13	21.82	9.24	5.67	1.33	2.96	0.09
OmniMVS ⁺ ₈ [12]	32.26	13.36	8.67	2.05	5.21	29.52	10.34	5.96	1.62	3.53	0.19
RomniStereo ₈	28.67	12.90	8.64	1.99	5.31	20.02	8.00	4.70	1.17	2.66	0.10
OmniMVS [11]	47.72	15.12	8.91	2.40	5.27	30.53	10.29	6.27	1.72	4.05	0.82
S-OmniMVS [13]	28.03	10.40	6.33	1.48	3.68	18.86	8.05	4.90	1.06	2.41	-
OmniMVS $^{+}_{32}$ -IS [12]	24.11	9.38	5.84	1.45	4.14	23.91	8.97	5.63	1.41	3.33	0.72
OmniMVS $_{32}^{+}$ [12]	20.70	8.18	5.49	1.37	4.11	19.89	5.89	3.99	1.30	2.64	0.82
RomniStereo32	20.42	8.49	5.81	1.39	4.22	12.13	4.73	3.02	0.80	1.85	0.21
RomniStereo ₆₄	17.77	7.52	5.00	1.22	<u>3.90</u>	10.52	4.05	2.69	0.74	1.73	0.44
Finetuned on OmniHot	use and S	unny									
OmniMVS ₄ +ft [12]	53.99	35.38	27.57	5.68	9.98	15.40	5.00	2.85	0.86	1.98	0.11
RomniStereo ₄ -ft	50.01	33.22	26.30	5.38	9.59	11.45	4.52	2.89	0.77	1.92	0.09
RomniStereo ₈ -ft	44.50	28.61	22.05	4.43	8.46	8.66	3.36	2.14	0.59	1.56	0.10
OmniMVS-ft [11]	50.28	22.78	15.60	3.52	7.44	21.09	4.63	2.58	1.04	1.97	0.82
S-OmniMVS-ft [13]	-	-	-	-	-	6.99	1.79	0.97	0.42	1.06	-
OmniMVS ₃₂ -ft [12]	44.79	27.17	20.41	4.23	8.42	9.70	3.51	2.13	0.64	1.69	0.82
RomniStereo32-ft	34.32	19.76	14.22	2.81	6.47	6.02	2.49	1.73	0.49	1.31	0.21
RomniStereo ₆₄ -ft	29.84	16.21	11.28	2.26	5.60	5.28	2.22	<u>1.51</u>	0.42	<u>1.14</u>	0.44

RomniStereo - Quantitative Comparison

Dataset			Sunny			Cloudy					Sunset				
Metric	>1	>3	>5	MAE	RMS	>1	>3	>5	MAE	RMS	>1	>3	>5	MAE	RMS
Non-learning based me	Non-learning based method														
Sphere-Stereo [23]	76.46	45.99	28.46	4.92	8.35	77.57	47.08	28.39	4.50	7.21	77.38	46.11	28.49	5.15	8.89
Trained on OmniThing	s only														
OmniMVS ₄ ⁺ [12]	26.18	7.06	4.37	1.24	3.06	28.50	6.62	3.93	1.23	2.92	25.29	6.92	4.18	1.22	3.06
RomniStereo ₄	17.34	6.92	4.54	1.06	3.30	16.65	6.30	4.09	1.01	3.04	16.77	6.63	4.28	1.04	3.27
$OmniMVS_8^+$ [12]	18.49	6.13	3.93	1.10	3.07	18.85	5.89	3.72	1.08	2.94	17.99	6.08	3.85	1.09	3.02
RomniStereo ₈	15.46	6.54	4.41	0.99	3.12	15.14	6.09	4.10	0.95	2.97	15.25	6.42	4.24	0.98	3.12
OmniMVS [11]	27.16	6.13	3.98	1.24	3.09	28.13	5.37	3.54	1.17	2.83	26.70	6.19	4.02	1.24	3.06
S-OmniMVS [13]	17.19	6.03	3.89	1.11	3.60	-	-	-	-	-	-	-	-	-	-
OmniMVS ⁺ ₃₂ -IS [12]	17.46	5.73	3.60	0.99	2.76	17.67	5.84	3.82	1.04	3.00	17.28	5.63	3.42	0.98	2.71
OmniMVS ₃₂ [12]	13.57	4.81	3.10	0.88	2.56	13.59	4.81	3.15	0.87	2.53	13.36	4.71	2.93	0.87	2.50
RomniStereo ₃₂	12.28	5.59	3.79	0.80	2.68	11.86	5.08	3.44	0.75	2.50	12.30	5.45	3.48	0.78	2.67
RomniStereo ₆₄	11.25	<u>5.30</u>	<u>3.59</u>	0.75	<u>2.57</u>	10.97	5.03	3.44	0.73	2.47	10.94	4.99	3.29	0.72	<u>2.56</u>
Finetuned on OmniHot	use and S	lunny													
OmniMVS ₄ ⁺ -ft [12]	10.54	3.42	2.11	0.65	2.06	10.22	3.19	1.92	0.61	1.94	10.81	3.64	2.21	0.66	2.11
RomniStereo ₄ -ft	9.30	3.47	2.21	0.60	2.25	9.54	3.47	2.17	0.60	2.20	9.48	3.57	2.27	0.60	2.25
RomniStereo ₈ -ft	7.38	2.75	1.72	0.48	1.92	7.53	2.69	1.66	0.48	1.87	7.65	2.94	1.86	0.50	2.01
OmniMVS-ft [11]	13.93	2.87	1.71	0.79	2.12	12.20	2.48	1.46	0.72	1.85	14.14	2.88	1.71	0.79	2.04
S-OmniMVS-ft [13]	6.66	2.18	1.40	0.47	1.98	-	-	-	-	-	-	-	-	-	-
OmniMVS ₃₂ -ft [12]	7.48	3.57	2.42	0.57	2.42	7.29	3.38	2.30	0.54	2.31	7.82	3.60	2.42	0.58	2.36
RomniStereo32-ft	5.19	1.98	1.23	0.36	1.55	5.63	2.03	1.29	0.39	1.72	5.53	2.13	1.34	0.37	1.61
RomniStereo ₆₄ -ft	4.61	1.78	1.10	0.32	1.43	4.94	1.83	1.16	0.34	1.53	4.88	1.90	1.19	0.34	1.49

Obrigado!

rafael.romeiro@impa.br